Xin Chang, Zhenpu Lu, Ran Luo, Xianhui Wang, Guodong Sun, Donglong Fu, Zhi-Jian Zhao, Jinlong Gong
{"title":"Microenvironment engineering of non-noble metal alloy for selective propane dehydrogenation","authors":"Xin Chang, Zhenpu Lu, Ran Luo, Xianhui Wang, Guodong Sun, Donglong Fu, Zhi-Jian Zhao, Jinlong Gong","doi":"10.1016/j.chempr.2024.08.017","DOIUrl":null,"url":null,"abstract":"<p>Although non-noble metal catalysts are appealing for propane dehydrogenation, achieving high propylene selectivity remains a persistent challenge, which necessitates the regulation of catalytic microenvironment. In this study, we comparatively investigate three commonly used active metals (Pt, Pd, and non-noble metal Ni) using both theoretical and experimental approaches. We find that the low selectivity of Ni-based catalysts is intrinsically attributed to a narrow interatomic distance (Δ<em>d</em>) between Ni atoms, which promotes side reactions. Thus, Ni-based intermetallic alloys are employed to modulate Δ<em>d</em>, whose surface microenvironment is quantified with a descriptor called degree-of-isolation. The established volcano-shaped isolation-selectivity plot provides a direct avenue for predicting propylene selectivity, which is determined by two competing variables: desorption and further dehydrogenation of propylene. The optimal catalyst, NiIn, manifests moderate Ni–C repulsion, obtaining >91% experimental propylene selectivity. This reveals the Sabatier principle over Ni-based catalysts for selective propane dehydrogenation and underscores the significance of microenvironment engineering.</p>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.08.017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although non-noble metal catalysts are appealing for propane dehydrogenation, achieving high propylene selectivity remains a persistent challenge, which necessitates the regulation of catalytic microenvironment. In this study, we comparatively investigate three commonly used active metals (Pt, Pd, and non-noble metal Ni) using both theoretical and experimental approaches. We find that the low selectivity of Ni-based catalysts is intrinsically attributed to a narrow interatomic distance (Δd) between Ni atoms, which promotes side reactions. Thus, Ni-based intermetallic alloys are employed to modulate Δd, whose surface microenvironment is quantified with a descriptor called degree-of-isolation. The established volcano-shaped isolation-selectivity plot provides a direct avenue for predicting propylene selectivity, which is determined by two competing variables: desorption and further dehydrogenation of propylene. The optimal catalyst, NiIn, manifests moderate Ni–C repulsion, obtaining >91% experimental propylene selectivity. This reveals the Sabatier principle over Ni-based catalysts for selective propane dehydrogenation and underscores the significance of microenvironment engineering.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.