Spin Manipulation of Heterogeneous Molecular Electrocatalysts by an Integrated Magnetic Field for Efficient Oxygen Redox Reactions

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zixun Yu, Di Zhang, Yangyang Wang, Fangzhou Liu, Fangxin She, Jiaxiang Chen, Yuefeng Zhang, Ruijie Wang, Zhiyuan Zeng, Li Song, Yuan Chen, Hao Li, Li Wei
{"title":"Spin Manipulation of Heterogeneous Molecular Electrocatalysts by an Integrated Magnetic Field for Efficient Oxygen Redox Reactions","authors":"Zixun Yu, Di Zhang, Yangyang Wang, Fangzhou Liu, Fangxin She, Jiaxiang Chen, Yuefeng Zhang, Ruijie Wang, Zhiyuan Zeng, Li Song, Yuan Chen, Hao Li, Li Wei","doi":"10.1002/adma.202408461","DOIUrl":null,"url":null,"abstract":"Understanding the spin-dependent activity of nitrogen-coordinated single metal atom (M-N-C) electrocatalysts for oxygen reduction and evolution reactions (ORR and OER) remains challenging due to the lack of structure-defined catalysts and effective spin manipulation tools. Herein, both challenges using a magnetic field integrated heterogeneous molecular electrocatalyst prepared by anchoring cobalt phthalocyanine (CoPc) deposited carbon black on polymer-protected magnet nanoparticles, are addressed. The built-in magnetic field can shift the Co center from low- to high-spin (HS) state without atomic structure modification, affording one-order higher turnover frequency, a 50% increased H<sub>2</sub>O<sub>2</sub> selectivity for ORR, and a ≈4000% magnetocurrent enhancement for OER. This catalyst can significantly minimize magnet usage, enabling safe and continuous production of a pure H<sub>2</sub>O<sub>2</sub> solution for 100 h from a 100 cm<sup>2</sup> electrolyzer. The new strategy demonstrated here also applies to other metal phthalocyanine-based catalysts, offering a universal platform for studying spin-related electrochemical processes.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202408461","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the spin-dependent activity of nitrogen-coordinated single metal atom (M-N-C) electrocatalysts for oxygen reduction and evolution reactions (ORR and OER) remains challenging due to the lack of structure-defined catalysts and effective spin manipulation tools. Herein, both challenges using a magnetic field integrated heterogeneous molecular electrocatalyst prepared by anchoring cobalt phthalocyanine (CoPc) deposited carbon black on polymer-protected magnet nanoparticles, are addressed. The built-in magnetic field can shift the Co center from low- to high-spin (HS) state without atomic structure modification, affording one-order higher turnover frequency, a 50% increased H2O2 selectivity for ORR, and a ≈4000% magnetocurrent enhancement for OER. This catalyst can significantly minimize magnet usage, enabling safe and continuous production of a pure H2O2 solution for 100 h from a 100 cm2 electrolyzer. The new strategy demonstrated here also applies to other metal phthalocyanine-based catalysts, offering a universal platform for studying spin-related electrochemical processes.

Abstract Image

利用集成磁场对异质分子电催化剂进行自旋操纵,以实现高效的氧氧化还原反应
由于缺乏结构确定的催化剂和有效的自旋操纵工具,了解氮配位单金属原子(M-N-C)电催化剂在氧还原和氧进化反应(ORR 和 OER)中的自旋依赖性活性仍然具有挑战性。在此,通过将沉积碳黑的酞菁钴(CoPc)锚定在聚合物保护的磁性纳米粒子上制备的磁场集成异质分子电催化剂解决了这两个难题。内置磁场可以在不改变原子结构的情况下将钴中心从低自旋(HS)态转移到高自旋(HS)态,从而使翻转频率提高一个数量级,对 ORR 的 H2O2 选择性提高 50%,对 OER 的磁电流增强≈4000%。这种催化剂可以大大减少磁铁的使用量,从而可以在 100 平方厘米的电解槽中安全、连续地生产 100 小时的纯 H2O2 溶液。这里展示的新策略也适用于其他基于金属酞菁的催化剂,为研究自旋相关电化学过程提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信