A microspectrometer with dual-signal spectral reconstruction

IF 33.7 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinchuan Du, Yang Wang, Yi Cui, Gaofeng Rao, Jianwen Huang, Xinrui Chen, Ting Zhou, Chunyang Wu, Zongyin Yang, Hanxiao Cui, Yicheng Zhao, Jie Xiong
{"title":"A microspectrometer with dual-signal spectral reconstruction","authors":"Xinchuan Du, Yang Wang, Yi Cui, Gaofeng Rao, Jianwen Huang, Xinrui Chen, Ting Zhou, Chunyang Wu, Zongyin Yang, Hanxiao Cui, Yicheng Zhao, Jie Xiong","doi":"10.1038/s41928-024-01242-9","DOIUrl":null,"url":null,"abstract":"<p>Computational spectrometers with small footprints can be integrated with other devices for use in applications such as chemical analysis, medical diagnosis and environmental monitoring. However, their spectral resolution is limited because conventional photoelectric detectors only measure an amplitude-dependent response to incident light. Here we show that a deformable two-dimensional homojunction can be used to create a microspectrometer with dual-signal spectral reconstruction. The semifloating molybdenum disulfide homojunction exhibits a giant electrostriction effect through which the kinetics of photo-generated carriers can be manipulated via an in-plane electric field generated by gate voltage. By leveraging the tunability of both amplitude and relaxation time of the photoelectric response, a dual-signal response can be used with a deep neural network algorithm to reconstruct an incident spectrum. Our dual-signal microspectrometer has a footprint of 20 × 25 µm<sup>2</sup>, offers a resolution of 1.2 nm and has a spectral waveband number of 380, which is comparable to benchtop spectrometers.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-024-01242-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Computational spectrometers with small footprints can be integrated with other devices for use in applications such as chemical analysis, medical diagnosis and environmental monitoring. However, their spectral resolution is limited because conventional photoelectric detectors only measure an amplitude-dependent response to incident light. Here we show that a deformable two-dimensional homojunction can be used to create a microspectrometer with dual-signal spectral reconstruction. The semifloating molybdenum disulfide homojunction exhibits a giant electrostriction effect through which the kinetics of photo-generated carriers can be manipulated via an in-plane electric field generated by gate voltage. By leveraging the tunability of both amplitude and relaxation time of the photoelectric response, a dual-signal response can be used with a deep neural network algorithm to reconstruct an incident spectrum. Our dual-signal microspectrometer has a footprint of 20 × 25 µm2, offers a resolution of 1.2 nm and has a spectral waveband number of 380, which is comparable to benchtop spectrometers.

Abstract Image

双信号光谱重建微光谱仪
体积小的计算光谱仪可与其他设备集成,用于化学分析、医疗诊断和环境监测等应用。然而,它们的光谱分辨率有限,因为传统的光电探测器只能测量入射光的振幅响应。在这里,我们展示了一种可变形的二维同质结,可用于制造具有双信号光谱重建功能的微型光谱仪。半浮动二硫化钼同质结表现出巨大的电致伸缩效应,通过栅极电压产生的面内电场,可以操纵光生载流子的动力学。通过利用光电响应的振幅和弛豫时间的可调性,双信号响应可与深度神经网络算法一起用于重建入射光谱。我们的双信号微光谱仪占地面积为 20 × 25 µm2,分辨率为 1.2 nm,光谱波段数为 380,与台式光谱仪相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Electronics
Nature Electronics Engineering-Electrical and Electronic Engineering
CiteScore
47.50
自引率
2.30%
发文量
159
期刊介绍: Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research. The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society. Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting. In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信