Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shijie Yin, Jianguo Li, Zhuozhi Lai, Qing-Wei Meng, Weipeng Xian, Zhifeng Dai, Sai Wang, Li Zhang, Yubing Xiong, Shengqian Ma, Qi Sun
{"title":"Giant gateable thermoelectric conversion by tuning the ion linkage interactions in covalent organic framework membranes","authors":"Shijie Yin, Jianguo Li, Zhuozhi Lai, Qing-Wei Meng, Weipeng Xian, Zhifeng Dai, Sai Wang, Li Zhang, Yubing Xiong, Shengqian Ma, Qi Sun","doi":"10.1038/s41467-024-52487-z","DOIUrl":null,"url":null,"abstract":"<p>Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments. Additionally, the membrane retains its permselectivity under temperature gradients, providing a method for converting low-grade waste heat into electrical energy. Experiments reveal that with a 3 M KCl solution and a 50 K temperature difference, the membrane generates an output power density of 5.70 W m<sup>−2</sup>. Furthermore, guided by a short-range ionic screening mechanism, the membrane exhibits adaptable permselectivity, allowing reversible and controllable operations by finely adjusting charge polarity and magnitude on the membrane’s channel surfaces via ion adsorption. Notably, treatment with K<sub>3</sub>PO<sub>4</sub> solutions significantly enhances permselectivity, resulting in a giant output power density of 20.22 W m<sup>−2</sup>, a 3.6-fold increase over the untreated membrane, setting a benchmark for converting low-grade heat into electrical energy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52487-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments. Additionally, the membrane retains its permselectivity under temperature gradients, providing a method for converting low-grade waste heat into electrical energy. Experiments reveal that with a 3 M KCl solution and a 50 K temperature difference, the membrane generates an output power density of 5.70 W m−2. Furthermore, guided by a short-range ionic screening mechanism, the membrane exhibits adaptable permselectivity, allowing reversible and controllable operations by finely adjusting charge polarity and magnitude on the membrane’s channel surfaces via ion adsorption. Notably, treatment with K3PO4 solutions significantly enhances permselectivity, resulting in a giant output power density of 20.22 W m−2, a 3.6-fold increase over the untreated membrane, setting a benchmark for converting low-grade heat into electrical energy.

Abstract Image

通过调整共价有机框架膜中的离子连接相互作用实现巨门可热电转换
以离子为载体进行高效能量转换需要在高盐度条件下保持高周选择性的膜,这是一项重大挑战。本研究通过操纵共价有机框架膜中的连接来解决这一问题,改变静电势的分布,从而影响离子与膜之间的短程相互作用。我们的研究表明,带有β-酮烯胺链节的电荷中性共价有机框架膜在高盐度环境中实现了创纪录的过选择性。此外,该膜还能在温度梯度下保持其过选择性,为将低品位废热转化为电能提供了一种方法。实验表明,在 3 M KCl 溶液和 50 K 温差条件下,膜可产生 5.70 W m-2 的输出功率密度。此外,在短程离子筛选机制的引导下,该膜表现出适应性强的过选择性,通过离子吸附微调膜通道表面的电荷极性和电荷量,实现可逆可控操作。值得注意的是,用 K3PO4 溶液处理可显著提高过选择性,使输出功率密度达到 20.22 W m-2,比未经处理的膜提高了 3.6 倍,为将低品位热能转化为电能树立了标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信