Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yang Liu, Huishan Shang, Bing Zhang, Dongpeng Yan, Xu Xiang
{"title":"Surface fluorination of BiVO4 for the photoelectrochemical oxidation of glycerol to formic acid","authors":"Yang Liu, Huishan Shang, Bing Zhang, Dongpeng Yan, Xu Xiang","doi":"10.1038/s41467-024-52161-4","DOIUrl":null,"url":null,"abstract":"<p>The C–C bond cleavage of biomass-derived glycerol to generate value-added C1 products remains challenging owing to its slow kinetics. We propose a surface fluorination strategy to construct dynamic dual hydrogen bonds on a semiconducting BiVO<sub>4</sub> photoelectrode to overcome the kinetic limit of the oxidation of glycerol to produce formic acid (FA) in acidic media. Intensive spectroscopic characterizations confirm that double hydrogen bonds are formed by the interaction of the F–Bi–F sites of modified BiVO<sub>4</sub> with water molecules, and the unique structure promotes the generation of hydroxyl radicals under light irradiation, which accelerates the kinetics of C–C bond cleavage. Theoretical investigations and infrared adsorption spectroscopy reveal that the double hydrogen bond enhances the C=O adsorption of the key intermediate product 1,3-dihydroxyacetone on the Bi–O sites to initiate the FA pathway. We fabricated a self-powered tandem device with an FA selectivity of 79% at the anode and a solar-to-H<sub>2</sub> conversion efficiency of 5.8% at the cathode, and these results are superior to most reported results in acidic electrolytes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52161-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The C–C bond cleavage of biomass-derived glycerol to generate value-added C1 products remains challenging owing to its slow kinetics. We propose a surface fluorination strategy to construct dynamic dual hydrogen bonds on a semiconducting BiVO4 photoelectrode to overcome the kinetic limit of the oxidation of glycerol to produce formic acid (FA) in acidic media. Intensive spectroscopic characterizations confirm that double hydrogen bonds are formed by the interaction of the F–Bi–F sites of modified BiVO4 with water molecules, and the unique structure promotes the generation of hydroxyl radicals under light irradiation, which accelerates the kinetics of C–C bond cleavage. Theoretical investigations and infrared adsorption spectroscopy reveal that the double hydrogen bond enhances the C=O adsorption of the key intermediate product 1,3-dihydroxyacetone on the Bi–O sites to initiate the FA pathway. We fabricated a self-powered tandem device with an FA selectivity of 79% at the anode and a solar-to-H2 conversion efficiency of 5.8% at the cathode, and these results are superior to most reported results in acidic electrolytes.

Abstract Image

用于甘油到甲酸的光电化学氧化的 BiVO4 表面氟化技术
生物质衍生甘油的 C-C 键裂解生成高附加值 C1 产品的过程因其缓慢的动力学而仍然具有挑战性。我们提出了一种表面氟化策略,在半导体 BiVO4 光电极上构建动态双氢键,以克服甘油在酸性介质中氧化生成甲酸(FA)的动力学极限。深入的光谱表征证实,改性 BiVO4 的 F-Bi-F 位点与水分子相互作用形成了双氢键,独特的结构促进了光照射下羟基自由基的生成,从而加速了 C-C 键裂解的动力学过程。理论研究和红外吸附光谱显示,双氢键增强了关键中间产物 1,3-二羟基丙酮在 Bi-O 位点上的 C=O 吸附,从而启动了 FA 途径。我们制造了一种自供电串联装置,其阳极的 FA 选择性为 79%,阴极的太阳能-H2 转换效率为 5.8%,这些结果优于大多数酸性电解质中的报告结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信