Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Li, Jing Zhong, Hao Wang, Jialun Gu, Fucong Lyu, Shengmei Chen, Haikun Wu, Lanxi Li, Chunyi Zhi, Jian Lu, Yang Yang Li
{"title":"Fluorine-lodged high-valent high-entropy layered double hydroxide for efficient, long-lasting zinc-air batteries","authors":"Bo Li, Jing Zhong, Hao Wang, Jialun Gu, Fucong Lyu, Shengmei Chen, Haikun Wu, Lanxi Li, Chunyi Zhi, Jian Lu, Yang Yang Li","doi":"10.1002/anie.202410978","DOIUrl":null,"url":null,"abstract":"Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (60.6% at 10 mA cm-2) and long-term stability (efficiency remains at 58.8% after 1050 charge-discharge cycles).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202410978","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (60.6% at 10 mA cm-2) and long-term stability (efficiency remains at 58.8% after 1050 charge-discharge cycles).
含氟高价高熵层状双氢氧化物用于高效长效锌-空气电池
要充分挖掘锌-空气电池(ZAB)的潜力,迫切需要高效稳定的双功能氧进化反应(OER)和氧还原反应(ORR)催化剂。高价氧化物(HVOs)和高熵氧化物(HEOs)因其最佳的电子结构和稳定性而成为合适的候选催化剂,但它们的合成要求很高。在这里,我们通过多离子共沉淀法方便地制备了一种低成本的含氟高价高熵层状双氢氧化物(HV-HE-LDH)(FeCoNi2F4(OH)4),其中 F- 被牢固地嵌入到各个氢氧化物层中。光谱检测和理论模拟显示,FeCoNi2F4(OH)4 中获得了高价金属阳离子,扩大了金属 3d 和 O 2p 之间的能带重叠,增强了电子传导性和电荷转移,从而具有较高的固有 OER 催化活性。更重要的是,FeCoNi2F4(OH)4 中强化的金属氧(M-O)键和稳定的八面体几何结构(M-O(F)6)防止了结构重组,从而实现了长期的催化稳定性。此外,还构建了一个具有快速氧气运输功能的高效三相反应界面,显著提高了 ORR 活性。用 FeCoNi2F4(OH)4@HCC(疏水性碳布)阴极组装的 ZAB 具有优异的性能,往返能量效率高(10 mA cm-2 时为 60.6%),且长期稳定(1050 次充放电循环后效率仍为 58.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信