Kathleen A. Martin, Eleni S. Papadoyannis, Jennifer K. Schiavo, Saba Shokat Fadaei, Habon A. Issa, Soomin C. Song, Sofia Orrey Valencia, Nesibe Z. Temiz, Matthew J. McGinley, David A. McCormick, Robert C. Froemke
{"title":"Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning","authors":"Kathleen A. Martin, Eleni S. Papadoyannis, Jennifer K. Schiavo, Saba Shokat Fadaei, Habon A. Issa, Soomin C. Song, Sofia Orrey Valencia, Nesibe Z. Temiz, Matthew J. McGinley, David A. McCormick, Robert C. Froemke","doi":"10.1038/s41593-024-01767-4","DOIUrl":null,"url":null,"abstract":"Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions. Perceptual abilities can be improved by training, up to certain limits. Martin et al. show that vagus nerve stimulation in mice boosts performance on an auditory task via cholinergic modulation, beyond the level achieved by training alone.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"27 11","pages":"2152-2166"},"PeriodicalIF":21.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01767-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions. Perceptual abilities can be improved by training, up to certain limits. Martin et al. show that vagus nerve stimulation in mice boosts performance on an auditory task via cholinergic modulation, beyond the level achieved by training alone.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.