Christina Grimm, Sian N. Duss, Mattia Privitera, Brandon R. Munn, Nikolaos Karalis, Stefan Frässle, Maria Wilhelm, Tommaso Patriarchi, Daniel Razansky, Nicole Wenderoth, James M. Shine, Johannes Bohacek, Valerio Zerbi
{"title":"Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy","authors":"Christina Grimm, Sian N. Duss, Mattia Privitera, Brandon R. Munn, Nikolaos Karalis, Stefan Frässle, Maria Wilhelm, Tommaso Patriarchi, Daniel Razansky, Nicole Wenderoth, James M. Shine, Johannes Bohacek, Valerio Zerbi","doi":"10.1038/s41593-024-01755-8","DOIUrl":null,"url":null,"abstract":"Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain’s topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC–NA system achieves a nuanced regulation of global circuit operations. Tonic and burst-like locus coeruleus firing distinctly tune brain topology toward associative and sensory regions, recruiting both astrocytic and neuronal inhibitory activity.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"27 11","pages":"2167-2177"},"PeriodicalIF":21.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41593-024-01755-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01755-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain’s topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC–NA system achieves a nuanced regulation of global circuit operations. Tonic and burst-like locus coeruleus firing distinctly tune brain topology toward associative and sensory regions, recruiting both astrocytic and neuronal inhibitory activity.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.