{"title":"Molecular Imaging of Renin Activity using Fluorogenic Nanoprobes for Precision Antihypertensive Therapy","authors":"Ya Zhou, Weiping Xu, Bankang Ruan, Lijuan Zhu, Yuyan Jiang, Hui Cai, Jiaguo Huang","doi":"10.1002/anie.202416002","DOIUrl":null,"url":null,"abstract":"Life-threatening hypertension remains inadequately controlled in clinics due to its heterogenous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90% versus 58%). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Life-threatening hypertension remains inadequately controlled in clinics due to its heterogenous renin levels. Rapid stratification of hypertension through renin analysis is crucial for effective personalized treatment, yet an ultrasensitive detection approach is currently lacking. Here, we report activatable renin nanoprobes (ARNs) for non-invasive and ultrasensitive profiling of renin activity and guiding antihypertensive treatment decision through near-infrared fluorescence (NIRF) in vivo imaging and in vitro urinalysis. ARNs are intrinsically non-fluorescent due to NIRF reporter connected to a gold nanocluster through a renin-responsive peptide. In hyperreninemia mouse models, ARNs specifically react with renin to liberate the renal clearable NIRF reporter for accurate renin detection that outperforms the gold standard radioimmunoassay. Such specific and sensitive detection also enables imaging-based high-throughput screening of antihypertensive drugs. In hypertensive rat models, ARNs enable ultrasensitive detection of both plasma and urinary renin, facilitating renin-guided precision treatment and significantly improving hypertension control rate (90% versus 58%). Our nanoprobe platform holds great potential for assisting clinicians in rapidly and accurately classifying hypertensive patients and improving outcomes through tailored treatment selection.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.