Yuqing Yan, Jun-Jie Zhu, Harold D. May, Cuihong Song, Jinyue Jiang, Lin Du, Zhiyong Jason Ren
{"title":"Methanogenic Potential of Sewer Microbiomes and Its Implications for Methane Emission","authors":"Yuqing Yan, Jun-Jie Zhu, Harold D. May, Cuihong Song, Jinyue Jiang, Lin Du, Zhiyong Jason Ren","doi":"10.1021/acs.est.4c04005","DOIUrl":null,"url":null,"abstract":"The sewer system, despite being a significant source of methane emissions, has often been overlooked in current greenhouse gas inventories due to the limited availability of quantitative data. Direct monitoring in sewers can be expensive or biased due to access limitations and internal heterogeneity of sewer networks. Fortunately, since methane is almost exclusively biogenic in sewers, we demonstrate in this study that the methanogenic potential can be estimated using known sewer microbiome data. By combining data mining techniques and bioinformatics databases, we developed the first data-driven method to analyze methanogenic potentials using a data set containing 633 observations of 53 variables obtained from literature mining. The methanogenic potential in the sewer sediment was around 250–870% higher than that in the wet biofilm on the pipe and sewage water. Additionally, <i>k</i>-means clustering and principal component analysis linked higher methane emission rates (9.72 ± 51.3 kg<sub>CO<sub>2</sub> eq</sub> m<sup>–3</sup> d<sup>–1</sup>) with smaller pipe size, higher water level, and higher potentials of sulfate reduction in the wetted pipe biofilm. These findings exhibit the possibility of connecting microbiome data with biogenic greenhouse gases, further offering insights into new approaches for understanding greenhouse gas emissions from understudied sources.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c04005","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sewer system, despite being a significant source of methane emissions, has often been overlooked in current greenhouse gas inventories due to the limited availability of quantitative data. Direct monitoring in sewers can be expensive or biased due to access limitations and internal heterogeneity of sewer networks. Fortunately, since methane is almost exclusively biogenic in sewers, we demonstrate in this study that the methanogenic potential can be estimated using known sewer microbiome data. By combining data mining techniques and bioinformatics databases, we developed the first data-driven method to analyze methanogenic potentials using a data set containing 633 observations of 53 variables obtained from literature mining. The methanogenic potential in the sewer sediment was around 250–870% higher than that in the wet biofilm on the pipe and sewage water. Additionally, k-means clustering and principal component analysis linked higher methane emission rates (9.72 ± 51.3 kgCO2 eq m–3 d–1) with smaller pipe size, higher water level, and higher potentials of sulfate reduction in the wetted pipe biofilm. These findings exhibit the possibility of connecting microbiome data with biogenic greenhouse gases, further offering insights into new approaches for understanding greenhouse gas emissions from understudied sources.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.