Aditya Koneru, Henry Chan, Sukriti Manna, Suvo Banik, Valeria Molinero, Subramanian K. R. S. Sankaranarayanan
{"title":"Machine Learning a Simple Interpretable Short-Range Potential for Silica","authors":"Aditya Koneru, Henry Chan, Sukriti Manna, Suvo Banik, Valeria Molinero, Subramanian K. R. S. Sankaranarayanan","doi":"10.1021/acs.jctc.4c00639","DOIUrl":null,"url":null,"abstract":"A wide array of models, spanning from computationally expensive ab initio methods to a spectrum of force-field approaches, have been developed and employed to probe silica polymorphs and understand growth processes and atomic-level dynamical transitions in silica. However, the quest for a model capable of making accurate predictions with high computational efficiency for various silica polymorphs is still ongoing. Recent developments in short-range machine-learned models, such as GAP and NNPScan, have shown promise in providing reasonable descriptions of silica, but their computational cost remains high compared to force fields such as BKS which are based on simple interpretable functional forms. Here, we build on the recent success of our reinforcement learning (RL) workflow to derive a new set of optimal parameters for a promising short-range BKS-based model proposed by Soules. We use RL to navigate the eight-dimensional parameter space of the Soules potential using an experimental training data set that includes both local and global structural features from approximately 21 experimentally realized silica polymorphs, including high density phases and porous zeolites. We compare the performance of our machine-learned ML-Soules model with other high quality models including our recent machine-learned parametrization of BKS (ML-BKS), a machine-learned potential (GAP), as well as predictions of ab initio calculations with the highly fidelity SCAN functional. The ML-Soules accurately captures the relative energetic ordering of various polymorphs as well as their structural features at a significantly reduced computational expense. The ML-Soules model also reasonably captures the structure, density, and elastic constants of quartz, as well as metastable silica polymorphs. We further discuss the limitations of the Soules functional form and propose potential enhancements, including the incorporation of additional three-body terms and/or the utilization of different short-ranged functional forms to achieve greater accuracy for both global and local features in the modeling of silica while retaining low computational cost.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00639","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A wide array of models, spanning from computationally expensive ab initio methods to a spectrum of force-field approaches, have been developed and employed to probe silica polymorphs and understand growth processes and atomic-level dynamical transitions in silica. However, the quest for a model capable of making accurate predictions with high computational efficiency for various silica polymorphs is still ongoing. Recent developments in short-range machine-learned models, such as GAP and NNPScan, have shown promise in providing reasonable descriptions of silica, but their computational cost remains high compared to force fields such as BKS which are based on simple interpretable functional forms. Here, we build on the recent success of our reinforcement learning (RL) workflow to derive a new set of optimal parameters for a promising short-range BKS-based model proposed by Soules. We use RL to navigate the eight-dimensional parameter space of the Soules potential using an experimental training data set that includes both local and global structural features from approximately 21 experimentally realized silica polymorphs, including high density phases and porous zeolites. We compare the performance of our machine-learned ML-Soules model with other high quality models including our recent machine-learned parametrization of BKS (ML-BKS), a machine-learned potential (GAP), as well as predictions of ab initio calculations with the highly fidelity SCAN functional. The ML-Soules accurately captures the relative energetic ordering of various polymorphs as well as their structural features at a significantly reduced computational expense. The ML-Soules model also reasonably captures the structure, density, and elastic constants of quartz, as well as metastable silica polymorphs. We further discuss the limitations of the Soules functional form and propose potential enhancements, including the incorporation of additional three-body terms and/or the utilization of different short-ranged functional forms to achieve greater accuracy for both global and local features in the modeling of silica while retaining low computational cost.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.