Jingwei Zhang, Xuebin Zhang, Matt A. King, Kewei Lyu
{"title":"A Model-Based Investigation of the Recent Rebound of Shelf Water Salinity in the Ross Sea","authors":"Jingwei Zhang, Xuebin Zhang, Matt A. King, Kewei Lyu","doi":"10.1029/2023GL106697","DOIUrl":null,"url":null,"abstract":"<p>Intense atmosphere-ocean-ice interactions in the Ross Sea play a vital role in global overturning circulation by supplying saline and dense shelf waters. Since the 1960s, freshening of the Ross Sea shelf water has led to a decline in Antarctic Bottom Water formation. However, during 2012–2018, salinity of the western Ross Sea has rebounded. This study adopts a global ocean-sea ice model to investigate the causes of this salinity rebound. Model-based surface salinity budget analysis indicates that the salinity rebound was driven by increased brine rejection from sea ice formation, triggered by nearly equal effects of local anomalous winds and surface heat flux. The local divergent wind anomalies promoted local sea ice formation by creating a thin ice area, while cooling heat flux anomaly decreased the surface temperature, increasing sea ice production as well. This highlights the importance of understanding local climate variability in projecting future dense shelf water change.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GL106697","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GL106697","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intense atmosphere-ocean-ice interactions in the Ross Sea play a vital role in global overturning circulation by supplying saline and dense shelf waters. Since the 1960s, freshening of the Ross Sea shelf water has led to a decline in Antarctic Bottom Water formation. However, during 2012–2018, salinity of the western Ross Sea has rebounded. This study adopts a global ocean-sea ice model to investigate the causes of this salinity rebound. Model-based surface salinity budget analysis indicates that the salinity rebound was driven by increased brine rejection from sea ice formation, triggered by nearly equal effects of local anomalous winds and surface heat flux. The local divergent wind anomalies promoted local sea ice formation by creating a thin ice area, while cooling heat flux anomaly decreased the surface temperature, increasing sea ice production as well. This highlights the importance of understanding local climate variability in projecting future dense shelf water change.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.