Harald Klammler, James W. Jawitz, Matthew J. Cohen
{"title":"A Simple Model of Flow Reversals in Florida’s Karst Springs","authors":"Harald Klammler, James W. Jawitz, Matthew J. Cohen","doi":"10.1029/2023wr035987","DOIUrl":null,"url":null,"abstract":"North Florida's karst springs are among the largest and most abundant in the world. Despite relatively stable spring discharges, flow reversals can episodically occur in some springs when river waters backflow into the aquifer during flood events. Reversals are normal features of the springs along the Suwanee River, but the changing incidence of these reversals in response to anthropogenic activities or climate change remains unclear and the mechanisms responsible for these reversals remain poorly described. Here we develop a reduced-complexity hydrogeological model of the Suwannee River catchment to explore conditions needed to induce spring flow reversals. Our model demonstrates that reversals require two conditions: (a) a hydrogeological setting that combines an upstream catchment with rapid hydrological responses to meteorological drivers, which freely drains to a downstream catchment containing the karst aquifer (i.e., the spring-fed river segment); and (b) meteorological conditions that create sufficient temporal variability in recharge. Given both conditions, recharge events can propagate from the upstream catchment and fill the downstream river segment faster than it can drain, causing river stage to rise above the aquifer head, resulting in temporary spring flow reversal (or bank storage). Our model accurately predicts significant post-flood increases in spring flow as bank storage recedes, and using measured electrical conductivity at a major river-adjacent spring we also quantify the enhancement of limestone dissolution (cave enlargement) due to reversal events. A comprehensive assessment of the incidence and duration of reversal events shows a predominant influence of climate and vegetation changes over that of groundwater pumping.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035987","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
North Florida's karst springs are among the largest and most abundant in the world. Despite relatively stable spring discharges, flow reversals can episodically occur in some springs when river waters backflow into the aquifer during flood events. Reversals are normal features of the springs along the Suwanee River, but the changing incidence of these reversals in response to anthropogenic activities or climate change remains unclear and the mechanisms responsible for these reversals remain poorly described. Here we develop a reduced-complexity hydrogeological model of the Suwannee River catchment to explore conditions needed to induce spring flow reversals. Our model demonstrates that reversals require two conditions: (a) a hydrogeological setting that combines an upstream catchment with rapid hydrological responses to meteorological drivers, which freely drains to a downstream catchment containing the karst aquifer (i.e., the spring-fed river segment); and (b) meteorological conditions that create sufficient temporal variability in recharge. Given both conditions, recharge events can propagate from the upstream catchment and fill the downstream river segment faster than it can drain, causing river stage to rise above the aquifer head, resulting in temporary spring flow reversal (or bank storage). Our model accurately predicts significant post-flood increases in spring flow as bank storage recedes, and using measured electrical conductivity at a major river-adjacent spring we also quantify the enhancement of limestone dissolution (cave enlargement) due to reversal events. A comprehensive assessment of the incidence and duration of reversal events shows a predominant influence of climate and vegetation changes over that of groundwater pumping.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.