Multi-view neural 3D reconstruction of micro- and nanostructures with atomic force microscopy

Shuo Chen, Mao Peng, Yijin Li, Bing-Feng Ju, Hujun Bao, Yuan-Liu Chen, Guofeng Zhang
{"title":"Multi-view neural 3D reconstruction of micro- and nanostructures with atomic force microscopy","authors":"Shuo Chen, Mao Peng, Yijin Li, Bing-Feng Ju, Hujun Bao, Yuan-Liu Chen, Guofeng Zhang","doi":"10.1038/s44172-024-00270-9","DOIUrl":null,"url":null,"abstract":"Atomic Force Microscopy (AFM) is a widely employed tool for micro- and nanoscale topographic imaging. However, conventional AFM scanning struggles to reconstruct complex 3D micro- and nanostructures precisely due to limitations such as incomplete sample topography capturing and tip-sample convolution artifacts. Here, we propose a multi-view neural-network-based framework with AFM, named MVN-AFM, which accurately reconstructs surface models of intricate micro- and nanostructures. Unlike previous 3D-AFM approaches, MVN-AFM does not depend on any specially shaped probes or costly modifications to the AFM system. To achieve this, MVN-AFM employs an iterative method to align multi-view data and eliminate AFM artifacts simultaneously. Furthermore, we apply the neural implicit surface reconstruction technique in nanotechnology and achieve improved results. Additional extensive experiments show that MVN-AFM effectively eliminates artifacts present in raw AFM images and reconstructs various micro- and nanostructures, including complex geometrical microstructures printed via two-photon lithography and nanoparticles such as poly(methyl methacrylate) (PMMA) nanospheres and zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. This work presents a cost-effective tool for micro- and nanoscale 3D analysis. Shuo Chen and colleagues present a cost-effective neural network-based method to deal with tip-sample convolution artifacts in atomic force microscopy. Their method merges multiview atomic force microscopy images into precise 3D models of complex micro- and nanostructures.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00270-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00270-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic Force Microscopy (AFM) is a widely employed tool for micro- and nanoscale topographic imaging. However, conventional AFM scanning struggles to reconstruct complex 3D micro- and nanostructures precisely due to limitations such as incomplete sample topography capturing and tip-sample convolution artifacts. Here, we propose a multi-view neural-network-based framework with AFM, named MVN-AFM, which accurately reconstructs surface models of intricate micro- and nanostructures. Unlike previous 3D-AFM approaches, MVN-AFM does not depend on any specially shaped probes or costly modifications to the AFM system. To achieve this, MVN-AFM employs an iterative method to align multi-view data and eliminate AFM artifacts simultaneously. Furthermore, we apply the neural implicit surface reconstruction technique in nanotechnology and achieve improved results. Additional extensive experiments show that MVN-AFM effectively eliminates artifacts present in raw AFM images and reconstructs various micro- and nanostructures, including complex geometrical microstructures printed via two-photon lithography and nanoparticles such as poly(methyl methacrylate) (PMMA) nanospheres and zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. This work presents a cost-effective tool for micro- and nanoscale 3D analysis. Shuo Chen and colleagues present a cost-effective neural network-based method to deal with tip-sample convolution artifacts in atomic force microscopy. Their method merges multiview atomic force microscopy images into precise 3D models of complex micro- and nanostructures.

Abstract Image

利用原子力显微镜对微观和纳米结构进行多视角神经三维重建
原子力显微镜(AFM)是一种广泛用于微米和纳米级形貌成像的工具。然而,由于样品形貌捕捉不完整和尖端-样品卷积伪影等限制,传统的原子力显微镜扫描难以精确重建复杂的三维微观和纳米结构。在这里,我们提出了一种基于多视角神经网络的原子力显微镜框架,名为 MVN-AFM,它能准确重建复杂微观和纳米结构的表面模型。与以往的 3D-AFM 方法不同,MVN-AFM 不依赖于任何特殊形状的探针,也不需要对 AFM 系统进行昂贵的改装。为此,MVN-AFM 采用了一种迭代方法来对齐多视角数据,并同时消除 AFM 伪影。此外,我们还在纳米技术中应用了神经隐式表面重建技术,并取得了更好的效果。其他大量实验表明,MVN-AFM 能有效消除原始 AFM 图像中存在的伪影,并重建各种微观和纳米结构,包括通过双光子光刻技术打印的复杂几何微观结构,以及聚甲基丙烯酸甲酯(PMMA)纳米球和沸石咪唑框架-67(ZIF-67)纳米晶体等纳米粒子。这项工作为微米和纳米级三维分析提供了一种经济高效的工具。Shuo Chen 及其同事提出了一种基于神经网络的经济高效的方法,用于处理原子力显微镜中的尖端-样品卷积伪影。他们的方法将多视角原子力显微镜图像合并成复杂微观和纳米结构的精确三维模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信