High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Oleg Makarovsky, Richard J. A. Hill, Tin S. Cheng, Alex Summerfield, Takeshi Taniguchi, Kenji Watanabe, Christopher J. Mellor, Amalia Patanè, Laurence Eaves, Sergei V. Novikov, Peter H. Beton
{"title":"High-temperature Brown-Zak oscillations in graphene/hBN moiré field effect transistor fabricated using molecular beam epitaxy","authors":"Oleg Makarovsky, Richard J. A. Hill, Tin S. Cheng, Alex Summerfield, Takeshi Taniguchi, Kenji Watanabe, Christopher J. Mellor, Amalia Patanè, Laurence Eaves, Sergei V. Novikov, Peter H. Beton","doi":"10.1038/s43246-024-00633-x","DOIUrl":null,"url":null,"abstract":"Graphene placed on hexagonal boron nitride (hBN) has received significant interest due to its excellent electrical performance and physics phenomena, such as superlattice Dirac points. Direct molecular beam epitaxy growth of graphene on hBN offers an alternative fabrication route for hBN/graphene devices. Here, we investigate the electronic transport of moiré field effect transistors (FETs) in which the conducting channel is monolayer graphene grown on hexagonal boron nitride by high temperature molecular beam epitaxy (HT-MBE). Alignment between hBN and HT-MBE graphene crystal lattices gives rise to a moiré-fringed hexagonal superlattice pattern. Its electronic band structure takes the form of a “Hofstadter butterfly”. When a strong magnetic field B is applied perpendicular to the graphene layer, the electrical conductance displays magneto-oscillations, periodic in B−1, over a wide range of gate voltages and temperatures up to 350 K. We attribute this behaviour to the quantisation of electronic charge and magnetic flux within each unit cell of the superlattice, which gives rise to so-called Brown-Zak oscillations, previously reported only in high-mobility exfoliated graphene. Thus, this HT-MBE graphene/hBN heterostructure provides a platform for observation of room temperature quantum effects and device applications. Moiré field-effect transistors based on graphene/hexagonal boron nitride heterostructures are promising for their high room-temperature carrier mobilities and magnetotransport properties. Here, high-temperature molecular beam epitaxy growth of graphene/hBN gives rise to a moiré-fringed hexagonal superlattice with Hofstadter butterfly electronic band structure and quantum magneto-oscillations above room temperature.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00633-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00633-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene placed on hexagonal boron nitride (hBN) has received significant interest due to its excellent electrical performance and physics phenomena, such as superlattice Dirac points. Direct molecular beam epitaxy growth of graphene on hBN offers an alternative fabrication route for hBN/graphene devices. Here, we investigate the electronic transport of moiré field effect transistors (FETs) in which the conducting channel is monolayer graphene grown on hexagonal boron nitride by high temperature molecular beam epitaxy (HT-MBE). Alignment between hBN and HT-MBE graphene crystal lattices gives rise to a moiré-fringed hexagonal superlattice pattern. Its electronic band structure takes the form of a “Hofstadter butterfly”. When a strong magnetic field B is applied perpendicular to the graphene layer, the electrical conductance displays magneto-oscillations, periodic in B−1, over a wide range of gate voltages and temperatures up to 350 K. We attribute this behaviour to the quantisation of electronic charge and magnetic flux within each unit cell of the superlattice, which gives rise to so-called Brown-Zak oscillations, previously reported only in high-mobility exfoliated graphene. Thus, this HT-MBE graphene/hBN heterostructure provides a platform for observation of room temperature quantum effects and device applications. Moiré field-effect transistors based on graphene/hexagonal boron nitride heterostructures are promising for their high room-temperature carrier mobilities and magnetotransport properties. Here, high-temperature molecular beam epitaxy growth of graphene/hBN gives rise to a moiré-fringed hexagonal superlattice with Hofstadter butterfly electronic band structure and quantum magneto-oscillations above room temperature.

Abstract Image

利用分子束外延技术制造的石墨烯/卤化硼莫伊里场效应晶体管中的高温布朗-扎克振荡
置于六方氮化硼(hBN)上的石墨烯因其优异的电气性能和超晶格狄拉克点等物理现象而备受关注。石墨烯在六方氮化硼上的直接分子束外延生长为六方氮化硼/石墨烯器件的制造提供了另一种途径。在这里,我们研究了摩尔场效应晶体管(FET)的电子传输,其中导电通道是通过高温分子束外延(HT-MBE)生长在六方氮化硼上的单层石墨烯。氮化硼和 HT-MBE 石墨烯晶格之间的排列产生了摩尔边六边形超晶格图案。其电子能带结构呈 "霍夫斯塔特蝴蝶 "状。当施加垂直于石墨烯层的强磁场 B 时,电导率在广泛的栅极电压和高达 350 K 的温度范围内显示出以 B-1 为周期的磁振荡。我们将这种行为归因于超晶格每个单元格内的电子电荷和磁通量的量化,从而产生了所谓的布朗-扎克振荡,这种振荡以前只在高迁移率剥离石墨烯中报道过。因此,这种 HT-MBE 石墨烯/hBN 异质结构为观察室温量子效应和器件应用提供了一个平台。基于石墨烯/六方氮化硼异质结构的莫伊里场效应晶体管具有很高的室温载流子迁移率和磁传输特性,因此前景广阔。在这里,石墨烯/六方氮化硼的高温分子束外延生长产生了具有霍夫施塔特蝶形电子能带结构和室温以上量子磁振荡的摩尔边六方超晶格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信