Guowang Wu , Gen Li , Dixi Ke , Xi Li , Min Zeng , Yongming Hu , Haoshuang Gu , Yuebin Li
{"title":"Synthesis and photoluminescence properties of novel far-red emitting garnet phosphor Y3Ga3MgSi(1-y)GeyO12:Mn4+","authors":"Guowang Wu , Gen Li , Dixi Ke , Xi Li , Min Zeng , Yongming Hu , Haoshuang Gu , Yuebin Li","doi":"10.1016/j.jlumin.2024.120897","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel far-red emitting garnet-structured phosphor, Y<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:Mn<sup>4+</sup>, was synthesized using the traditional solid-state reaction method. The prepared Y<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:Mn<sup>4+</sup> phosphor exhibits a broad excitation band in the range of 250–600 nm and emits bright far-red light in the wavelength range of 630–710 nm, with a peak at 670 nm when excited at 354 nm. The optimal doping concentration of Mn<sup>4+</sup> is approximately x = 0.006. Beyond this concentration, luminescence quenching occurs due to energy transfer between Mn<sup>4+</sup> ions caused by dipole-dipole interactions. The effect of cation substitution on the photoluminescence properties of Y<sub>3</sub>Ga<sub>3</sub>MgSi<sub>(1-y)</sub>Ge<sub>y</sub>O<sub>12</sub>:0.01Mn<sup>4+</sup> phosphors was studied, revealing that the substitution of Ge<sup>4+</sup> ions can systematically influence the luminescence of Mn<sup>4+</sup>. The Y<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:0.01Mn<sup>4+</sup> phosphor exhibits excellent color purity, and its emission spectrum matches well with the absorption spectra of photosensitive pigments P<sub>R</sub> and P<sub>FR</sub>. The temperature-dependent emission spectra of Y<sub>3</sub>Ga<sub>3</sub>MgSi<sub>(1-y)</sub>Ge<sub>y</sub>O<sub>12</sub>:0.01Mn<sup>4+</sup> phosphors were studied, and the activation energy was calculated. The substitution of Ge<sup>4+</sup> ions can improve the thermal stability of the samples. These outstanding photoluminescence properties suggest that Y<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:Mn<sup>4+</sup> phosphor has application potential in pc-WLEDs and indoor plant cultivation pc-RLEDs. The findings of this work provide ideas for the design of high performance Mn<sup>4+</sup> activated phosphors.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120897"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004617","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel far-red emitting garnet-structured phosphor, Y3Ga3MgSiO12:Mn4+, was synthesized using the traditional solid-state reaction method. The prepared Y3Ga3MgSiO12:Mn4+ phosphor exhibits a broad excitation band in the range of 250–600 nm and emits bright far-red light in the wavelength range of 630–710 nm, with a peak at 670 nm when excited at 354 nm. The optimal doping concentration of Mn4+ is approximately x = 0.006. Beyond this concentration, luminescence quenching occurs due to energy transfer between Mn4+ ions caused by dipole-dipole interactions. The effect of cation substitution on the photoluminescence properties of Y3Ga3MgSi(1-y)GeyO12:0.01Mn4+ phosphors was studied, revealing that the substitution of Ge4+ ions can systematically influence the luminescence of Mn4+. The Y3Ga3MgSiO12:0.01Mn4+ phosphor exhibits excellent color purity, and its emission spectrum matches well with the absorption spectra of photosensitive pigments PR and PFR. The temperature-dependent emission spectra of Y3Ga3MgSi(1-y)GeyO12:0.01Mn4+ phosphors were studied, and the activation energy was calculated. The substitution of Ge4+ ions can improve the thermal stability of the samples. These outstanding photoluminescence properties suggest that Y3Ga3MgSiO12:Mn4+ phosphor has application potential in pc-WLEDs and indoor plant cultivation pc-RLEDs. The findings of this work provide ideas for the design of high performance Mn4+ activated phosphors.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.