Unraveling the role of crystal structural variations in modifying the luminescence properties of CMS: Eu3+ phosphor

IF 3.3 3区 物理与天体物理 Q2 OPTICS
{"title":"Unraveling the role of crystal structural variations in modifying the luminescence properties of CMS: Eu3+ phosphor","authors":"","doi":"10.1016/j.jlumin.2024.120894","DOIUrl":null,"url":null,"abstract":"<div><p>Pristine and europium doped calcium magnesium silicate (CMS and CMS: Eu<sup>3+</sup>) phosphor having akermanite (Ca<sub>2</sub>MgSi<sub>2</sub>O<sub>7</sub>), monticellite (CaMgSiO<sub>4</sub>) and merwinite (Ca<sub>3</sub>MgSi<sub>2</sub>O<sub>8</sub>) phases are synthesized via solid state reaction method. The modification of photoluminescence properties such as emission intensity, decay time and quantum yield (QY) due to the variation of the crystal structure, local site symmetry and coordination geometry of akermanite, monticellite and merwinite phases are studied. The merwinite phase is optimized at an annealing temperature of 900 °C, whereas monticellite phase is at 1100 °C. The agglomerated morphology changes to particle formation as the annealing temperature changes from 900 °C to 1100 °C. The lattice parameters and site preference of Eu<sup>3+</sup> ions are determined using Density Functional Theory (DFT) calculations. The analysis of lattice expansion, formation enthalpy (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>f</mi></msub></mrow></math></span>) and mixing energy (<span><math><mrow><msub><mrow><mo>Δ</mo><mi>H</mi></mrow><mi>m</mi></msub></mrow></math></span>) reveal the preference of Eu<sup>3+</sup> occupation in the Ca<sup>2+</sup> cationic site over Mg<sup>2+</sup> for all three phases. The blueshift and redshift of Mg-O and Ca-O stretching in the Fourier Transform Infra-Red (FTIR) analysis agree with the DFT calculation. UV–visible spectra analyses reveal a modification in optical bandgap with Eu<sup>3+</sup> addition. The highest intensity <sup>5</sup>D<sub>0</sub>→<sup>7</sup>F<sub>2</sub> induced electric dipole (ED), hypersensitive transition indicates the preference of Eu<sup>3+</sup> ions in a non-inversion center for all the phases. This agrees with the higher <span><math><mrow><msub><mi>Ω</mi><mn>2</mn></msub></mrow></math></span> values from Judd-Ofelt (J-O) parameter calculations and local site symmetry analysis of DFT-optimized structures. The monticellite phase exhibits maximum crystal field splitting due to its octahedral geometry, whereas the akermanite phase, with its distinct dodecahedral geometry, displays maximum emission intensity, an extended decay time, and the highest quantum yield (QY). The modification of photoluminescence properties of the three phases is analyzed in detail based on the coordination geometry and the distortion in local sites due to Eu<sup>3+</sup> doping in the Ca and Mg sites. CIE color chromaticity analysis confirms the orange-red emission with 91.94 %, 90.88 % and 90.24 % color purity for akermanite, monticellite and merwinite phases respectively. Hence, the present study throws light on the potency of the akermanite phase of CMS: Eu<sup>3+</sup> phosphor with 70 % QY as the optimal matrix for Eu<sup>3+</sup> ions over monticellite and merwinite host matrices.</p></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004587","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pristine and europium doped calcium magnesium silicate (CMS and CMS: Eu3+) phosphor having akermanite (Ca2MgSi2O7), monticellite (CaMgSiO4) and merwinite (Ca3MgSi2O8) phases are synthesized via solid state reaction method. The modification of photoluminescence properties such as emission intensity, decay time and quantum yield (QY) due to the variation of the crystal structure, local site symmetry and coordination geometry of akermanite, monticellite and merwinite phases are studied. The merwinite phase is optimized at an annealing temperature of 900 °C, whereas monticellite phase is at 1100 °C. The agglomerated morphology changes to particle formation as the annealing temperature changes from 900 °C to 1100 °C. The lattice parameters and site preference of Eu3+ ions are determined using Density Functional Theory (DFT) calculations. The analysis of lattice expansion, formation enthalpy (ΔHf) and mixing energy (ΔHm) reveal the preference of Eu3+ occupation in the Ca2+ cationic site over Mg2+ for all three phases. The blueshift and redshift of Mg-O and Ca-O stretching in the Fourier Transform Infra-Red (FTIR) analysis agree with the DFT calculation. UV–visible spectra analyses reveal a modification in optical bandgap with Eu3+ addition. The highest intensity 5D07F2 induced electric dipole (ED), hypersensitive transition indicates the preference of Eu3+ ions in a non-inversion center for all the phases. This agrees with the higher Ω2 values from Judd-Ofelt (J-O) parameter calculations and local site symmetry analysis of DFT-optimized structures. The monticellite phase exhibits maximum crystal field splitting due to its octahedral geometry, whereas the akermanite phase, with its distinct dodecahedral geometry, displays maximum emission intensity, an extended decay time, and the highest quantum yield (QY). The modification of photoluminescence properties of the three phases is analyzed in detail based on the coordination geometry and the distortion in local sites due to Eu3+ doping in the Ca and Mg sites. CIE color chromaticity analysis confirms the orange-red emission with 91.94 %, 90.88 % and 90.24 % color purity for akermanite, monticellite and merwinite phases respectively. Hence, the present study throws light on the potency of the akermanite phase of CMS: Eu3+ phosphor with 70 % QY as the optimal matrix for Eu3+ ions over monticellite and merwinite host matrices.

揭示晶体结构变化在改变 CMS 发光特性中的作用:Eu3+ 荧光粉
通过固态反应方法合成了原始和掺杂铕的硅酸钙镁(CMS 和 CMS:Eu3+)荧光粉,它们分别具有阿克曼石(Ca2MgSi2O7)、蒙脱石(CaMgSiO4)和梅花石(Ca3MgSi2O8)相。研究了由于阿克曼石、蒙脱石和梅花石相的晶体结构、局部位点对称性和配位几何的变化而导致的发射强度、衰减时间和量子产率(QY)等光致发光特性的变化。梅花石相在退火温度为 900 ℃ 时达到最佳状态,而芒硝相在退火温度为 1100 ℃ 时达到最佳状态。当退火温度从 900 °C 变为 1100 °C 时,团聚形态转变为颗粒形态。通过密度泛函理论(DFT)计算确定了 Eu3+ 离子的晶格参数和位点偏好。对晶格膨胀、形成焓(ΔHf)和混合能(ΔHm)的分析表明,在所有三相中,Eu3+离子都优先占据 Ca2+阳离子位点,而不是 Mg2+。傅立叶变换红外光谱(FTIR)分析中 Mg-O 和 Ca-O 伸展的蓝移和红移与 DFT 计算结果一致。紫外-可见光谱分析显示,Eu3+ 的加入改变了光带隙。强度最高的 5D0→7F2 诱导的电偶极子(ED)超敏转变表明,Eu3+ 离子在所有相中都偏爱非反转中心。这与 Judd-Ofelt (J-O) 参数计算和 DFT 优化结构的局部位点对称性分析得出的较高Ω2 值相吻合。芒硝相因其八面体几何形状而显示出最大的晶场分裂,而具有独特十二面体几何形状的天青石相则显示出最大的发射强度、较长的衰减时间和最高的量子产率(QY)。根据配位几何以及在 Ca 和 Mg 位点掺杂 Eu3+ 导致的局部位点畸变,详细分析了这三种相的光致发光特性的变化。CIE 颜色色度分析证实,阿克曼石、蒙铁星和梅尔温特石分别发出 91.94 %、90.88 % 和 90.24 % 颜色纯度的橙红色。因此,本研究揭示了 CMS 的赤铁矿相的有效性:Eu3+荧光粉的 QY 值为 70%,是 Eu3+ 离子的最佳基质,优于 monticellite 和 merwinite 主基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Luminescence
Journal of Luminescence 物理-光学
CiteScore
6.70
自引率
13.90%
发文量
850
审稿时长
3.8 months
期刊介绍: The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid. We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信