{"title":"Design of a compact and portable space neutron spectrometer based on Monte Carlo","authors":"","doi":"10.1016/j.apradiso.2024.111500","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of space exploration, the detection of space neutron radiation is becoming increasingly important. The currently widely used Bonner sphere spectrometer have drawbacks such as large size and weight, as well as low fault tolerance, when detecting space neutron spectra. This paper describes in detail a new type of space neutron spectrometer (SNS), which has two different specifications to adapt to the directional and non-directional neutron field environment, and can measure the directional neutron energy spectrum. For the directed neutron field, SNS integrates 12 <sup>3</sup>He thermal neutron counters (diameter 3 cm: 3, diameter 4 cm: 6, diameter 5 cm: 3) and uses cylindrical polyethylene as a moderator. For non-directed neutron fields, SNS integrates 9 <sup>3</sup>He thermal neutron counters (diameter 3 cm: 4, diameter 4 cm: 3, diameter 5 cm: 2) located in a single structure made of polyethylene, boron-containing polyethylene and gadolinium. The device is capable of providing a strong directional response in the energy range of thermal neutrons up to 20 MeV, with little sensitivity to neutrons coming from directions other than the axis of the cylinder. The Monte Carlo transport code FLUKA was used to determine the final configuration of the instrument, including the arrangement, number, and position of thermal neutron counters. In addition, the response matrix of the instrument was calculated using FLUKA code. This device can replace traditional Bonner sphere spectrometer for measuring space neutrons, and it also provides reference value for downsized and lightweight neutron spectrometers on the ground.</p></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324003282","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of space exploration, the detection of space neutron radiation is becoming increasingly important. The currently widely used Bonner sphere spectrometer have drawbacks such as large size and weight, as well as low fault tolerance, when detecting space neutron spectra. This paper describes in detail a new type of space neutron spectrometer (SNS), which has two different specifications to adapt to the directional and non-directional neutron field environment, and can measure the directional neutron energy spectrum. For the directed neutron field, SNS integrates 12 3He thermal neutron counters (diameter 3 cm: 3, diameter 4 cm: 6, diameter 5 cm: 3) and uses cylindrical polyethylene as a moderator. For non-directed neutron fields, SNS integrates 9 3He thermal neutron counters (diameter 3 cm: 4, diameter 4 cm: 3, diameter 5 cm: 2) located in a single structure made of polyethylene, boron-containing polyethylene and gadolinium. The device is capable of providing a strong directional response in the energy range of thermal neutrons up to 20 MeV, with little sensitivity to neutrons coming from directions other than the axis of the cylinder. The Monte Carlo transport code FLUKA was used to determine the final configuration of the instrument, including the arrangement, number, and position of thermal neutron counters. In addition, the response matrix of the instrument was calculated using FLUKA code. This device can replace traditional Bonner sphere spectrometer for measuring space neutrons, and it also provides reference value for downsized and lightweight neutron spectrometers on the ground.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.