Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Marco C. Miotto, Steven Reiken, Anetta Wronska, Qi Yuan, Haikel Dridi, Yang Liu, Gunnar Weninger, Carl Tchagou, Andrew R. Marks
{"title":"Structural basis for ryanodine receptor type 2 leak in heart failure and arrhythmogenic disorders","authors":"Marco C. Miotto, Steven Reiken, Anetta Wronska, Qi Yuan, Haikel Dridi, Yang Liu, Gunnar Weninger, Carl Tchagou, Andrew R. Marks","doi":"10.1038/s41467-024-51791-y","DOIUrl":null,"url":null,"abstract":"<p>Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca<sup>2+</sup> leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca<sup>2+</sup> leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca<sup>2+</sup> leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-51791-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heart failure, the leading cause of mortality and morbidity in the developed world, is characterized by cardiac ryanodine receptor 2 channels that are hyperphosphorylated, oxidized, and depleted of the stabilizing subunit calstabin-2. This results in a diastolic sarcoplasmic reticulum Ca2+ leak that impairs cardiac contractility and triggers arrhythmias. Genetic mutations in ryanodine receptor 2 can also cause Ca2+ leak, leading to arrhythmias and sudden cardiac death. Here, we solved the cryogenic electron microscopy structures of ryanodine receptor 2 variants linked either to heart failure or inherited sudden cardiac death. All are in the primed state, part way between closed and open. Binding of Rycal drugs to ryanodine receptor 2 channels reverts the primed state back towards the closed state, decreasing Ca2+ leak, improving cardiac function, and preventing arrhythmias. We propose a structural-physiological mechanism whereby the ryanodine receptor 2 channel primed state underlies the arrhythmias in heart failure and arrhythmogenic disorders.

Abstract Image

心力衰竭和致心律失常疾病中雷诺丁受体 2 型泄漏的结构基础
在发达国家,心力衰竭是导致死亡和发病的主要原因,其特征是心脏雷诺丁受体 2 通道过度磷酸化、氧化和缺乏稳定亚基 calstabin-2。这导致舒张期肌浆网 Ca2+ 泄漏,从而损害心脏收缩能力并引发心律失常。雷诺丁受体 2 的基因突变也会引起 Ca2+ 泄漏,导致心律失常和心脏性猝死。在这里,我们解析了与心力衰竭或遗传性心脏性猝死有关的雷诺丁受体2变体的低温电子显微镜结构。所有变体都处于启动状态,介于关闭和开放之间。将 Rycal 药物与雷诺丁受体 2 通道结合后,可使启动状态恢复到关闭状态,从而减少 Ca2+ 泄漏,改善心脏功能并防止心律失常。我们提出了一种结构生理学机制,即雷诺丁受体 2 通道的启动状态是心力衰竭和致心律失常疾病中心律失常的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信