{"title":"Computational Methods for Image Analysis in Craniofacial Development and Disease","authors":"E. James, A.J. Caetano, P.T. Sharpe","doi":"10.1177/00220345241265048","DOIUrl":null,"url":null,"abstract":"Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241265048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Observation is at the center of all biological sciences. Advances in imaging technologies are therefore essential to derive novel biological insights to better understand the complex workings of living systems. Recent high-throughput sequencing and imaging techniques are allowing researchers to simultaneously address complex molecular variations spatially and temporarily in tissues and organs. The availability of increasingly large dataset sizes has allowed for the evolution of robust deep learning models, designed to interrogate biomedical imaging data. These models are emerging as transformative tools in diagnostic medicine. Combined, these advances allow for dynamic, quantitative, and predictive observations of entire organisms and tissues. Here, we address 3 main tasks of bioimage analysis, image restoration, segmentation, and tracking and discuss new computational tools allowing for 3-dimensional spatial genomics maps. Finally, we demonstrate how these advances have been applied in studies of craniofacial development and oral disease pathogenesis.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.