Q. Ou, W. Huang, B. Wang, L. Niu, Z. Li, X. Mao, S. Shi
{"title":"Apoptotic Vesicles: Therapeutic Mechanisms and Critical Issues","authors":"Q. Ou, W. Huang, B. Wang, L. Niu, Z. Li, X. Mao, S. Shi","doi":"10.1177/00220345241265676","DOIUrl":null,"url":null,"abstract":"Apoptosis is the most prominent mode of programmed cell death and is necessary for the maintenance of tissue homeostasis. During cell apoptosis, a distinctive population of extracellular vesicles is generated, termed apoptotic vesicles (apoVs). ApoVs inherit a variety of biological molecules such as proteins, RNAs, nuclear components, lipids, and gasotransmitters from their parent cells. ApoVs have shown promising therapeutic potential for inflammation, tumors, immune disorders, and tissue regeneration. In addition, apoVs can be used as drug carriers, vaccine development, and disease diagnosis. Recently, apoVs have been used in clinical trials to treat a variety of diseases, such as temporomandibular joint osteoarthritis and the regeneration of functional alveolar bone. Here, we review the history of apoV research, current preclinical and clinical studies, and the potential issues of apoV application.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241265676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Apoptosis is the most prominent mode of programmed cell death and is necessary for the maintenance of tissue homeostasis. During cell apoptosis, a distinctive population of extracellular vesicles is generated, termed apoptotic vesicles (apoVs). ApoVs inherit a variety of biological molecules such as proteins, RNAs, nuclear components, lipids, and gasotransmitters from their parent cells. ApoVs have shown promising therapeutic potential for inflammation, tumors, immune disorders, and tissue regeneration. In addition, apoVs can be used as drug carriers, vaccine development, and disease diagnosis. Recently, apoVs have been used in clinical trials to treat a variety of diseases, such as temporomandibular joint osteoarthritis and the regeneration of functional alveolar bone. Here, we review the history of apoV research, current preclinical and clinical studies, and the potential issues of apoV application.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.