Ultraselective, Ultrahigh Resolution 1D TOCSY

IF 6.1 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. James R. D. Montgomery, Emma L. Gates, Dr. Marshall J. Smith, Dr. Daniel A. Taylor, Dr. Jonathan P. Bradley, Dr. Daniel B. G. Berry, Dr. Peter Kiraly, Prof. Mathias Nilsson, Prof. Gareth A. Morris, Dr. Ralph W. Adams, Dr. Laura Castañar
{"title":"Ultraselective, Ultrahigh Resolution 1D TOCSY","authors":"Dr. James R. D. Montgomery,&nbsp;Emma L. Gates,&nbsp;Dr. Marshall J. Smith,&nbsp;Dr. Daniel A. Taylor,&nbsp;Dr. Jonathan P. Bradley,&nbsp;Dr. Daniel B. G. Berry,&nbsp;Dr. Peter Kiraly,&nbsp;Prof. Mathias Nilsson,&nbsp;Prof. Gareth A. Morris,&nbsp;Dr. Ralph W. Adams,&nbsp;Dr. Laura Castañar","doi":"10.1002/cmtd.202400013","DOIUrl":null,"url":null,"abstract":"<p>Solution state <sup>1</sup>H NMR spectroscopy provides valuable insights into molecular structure and conformation. However, when the spectrum exhibits severe signal overlap, it hampers the extraction of key structural information. Here, an ultraselective, ultrahigh resolution TOCSY method is introduced that greatly reduces spectral complexity, allowing the extraction of previously inaccessible spectral information. It combines the recently developed GEMSTONE excitation with homonuclear decoupling to provide highly simplified through-bond correlation 1D <sup>1</sup>H NMR spectra, showing all signals within the selected spin system as singlets. The new method can greatly facilitate the analysis of mixtures, as shown here for a mixture of <i>Cinchona</i> alkaloids (popular catalysts in asymmetric synthesis) and a mixture of glucocorticoids (used for treating conditions such as asthma).</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"4 9","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202400013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmtd.202400013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solution state 1H NMR spectroscopy provides valuable insights into molecular structure and conformation. However, when the spectrum exhibits severe signal overlap, it hampers the extraction of key structural information. Here, an ultraselective, ultrahigh resolution TOCSY method is introduced that greatly reduces spectral complexity, allowing the extraction of previously inaccessible spectral information. It combines the recently developed GEMSTONE excitation with homonuclear decoupling to provide highly simplified through-bond correlation 1D 1H NMR spectra, showing all signals within the selected spin system as singlets. The new method can greatly facilitate the analysis of mixtures, as shown here for a mixture of Cinchona alkaloids (popular catalysts in asymmetric synthesis) and a mixture of glucocorticoids (used for treating conditions such as asthma).

Abstract Image

超选择性、超高分辨率 1D TOCSY
溶液态 1H NMR 光谱为了解分子结构和构象提供了宝贵的信息。然而,当光谱显示出严重的信号重叠时,就会阻碍关键结构信息的提取。本文介绍了一种超选择性、超高分辨率 TOCSY 方法,它大大降低了光谱的复杂性,可提取以前无法获取的光谱信息。它将最近开发的 GEMSTONE 激发与同核解耦相结合,提供高度简化的通键相关一维 1H NMR 光谱,将所选自旋系统内的所有信号显示为单个信号。这种新方法大大方便了对混合物的分析,如图所示的金鸡纳生物碱混合物(不对称合成中常用的催化剂)和糖皮质激素混合物(用于治疗哮喘等疾病)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信