{"title":"Short-term power load forecasting based on Seq2Seq model integrating Bayesian optimization, temporal convolutional network and attention","authors":"Yeming Dai, Weijie Yu","doi":"10.1016/j.asoc.2024.112248","DOIUrl":null,"url":null,"abstract":"<div><p>Power load forecasting is of great significance to the electricity management. However, extant research is insufficient in comprehensively combining data processing and further optimization of existing prediction models. Therefore, this paper propose an improved power load prediction methods from two aspects: data processing and optimization of Sequence to Sequence (Seq2Seq) model. Firstly, in the data processing, Extreme Gradient Boosting (XGBoost) is adopted to eliminate the redundant features for feature extraction. Meanwhile, Successive Variational Mode Decomposition (SVMD) is employed to solve the unsteadiness and nonlinearities present in electricity data during the decomposition process. Secondly, the Seq2Seq model is selected and improved with a variety of machine learning methods. Specifically, input data features are extracted using Convolutional Neural Networks (CNN), enhancing the decoder's focus on vital information with the Attention mechanism (AM). Temporal Convolutional Network (TCN) serves as both the encoder and decoder of Seq2Seq, with further optimization of the model parameters through the Bayesian Optimization (BO) algorithm. Finally, the cases of two real power market datasets in Switzerland and Singapore illustrate the efficiency and superiority of proposed hybrid forecasting method. Through a comprehensive comparison and analysis with the other six models and four commonly used evaluation metrics, it is evident that the proposed method excels in performance, attaining the highest level of prediction accuracy, with the highest accuracy rate of 95.83 %. Consequently, it exhibits significant practical utility in the realm of power load forecasting.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010226","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Power load forecasting is of great significance to the electricity management. However, extant research is insufficient in comprehensively combining data processing and further optimization of existing prediction models. Therefore, this paper propose an improved power load prediction methods from two aspects: data processing and optimization of Sequence to Sequence (Seq2Seq) model. Firstly, in the data processing, Extreme Gradient Boosting (XGBoost) is adopted to eliminate the redundant features for feature extraction. Meanwhile, Successive Variational Mode Decomposition (SVMD) is employed to solve the unsteadiness and nonlinearities present in electricity data during the decomposition process. Secondly, the Seq2Seq model is selected and improved with a variety of machine learning methods. Specifically, input data features are extracted using Convolutional Neural Networks (CNN), enhancing the decoder's focus on vital information with the Attention mechanism (AM). Temporal Convolutional Network (TCN) serves as both the encoder and decoder of Seq2Seq, with further optimization of the model parameters through the Bayesian Optimization (BO) algorithm. Finally, the cases of two real power market datasets in Switzerland and Singapore illustrate the efficiency and superiority of proposed hybrid forecasting method. Through a comprehensive comparison and analysis with the other six models and four commonly used evaluation metrics, it is evident that the proposed method excels in performance, attaining the highest level of prediction accuracy, with the highest accuracy rate of 95.83 %. Consequently, it exhibits significant practical utility in the realm of power load forecasting.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.