Zheng Li , Zhicheng Jiang , Yiping Luo , Chenyu Ge , Xiaoyan Wang , Changwei Hu
{"title":"Study on the role of alkali halides on the mutarotation and dehydration of d-xylose in aqueous solution","authors":"Zheng Li , Zhicheng Jiang , Yiping Luo , Chenyu Ge , Xiaoyan Wang , Changwei Hu","doi":"10.1016/j.carres.2024.109258","DOIUrl":null,"url":null,"abstract":"<div><p>Although the xylose mutarotation and transformation have been investigated largely separately, their relationship has been rarely systematically elaborated. The effect of several factors such as xylose concentration, temperature, and salt concentration, affecting the mutarotation of xylose are discussed. Nine alkali halides (LiCl, NaCl, KCl, LiBr, NaBr, KBr, LiI, NaI, and KI) are used to test salt effects. The relationship between xylose rotation rate constant (<em>k</em><sub><em>M</em></sub>), specific optical rotation at equilibrium ([α]<sub>eqm</sub>), α/β ratio, H chemical shift difference (ΔΔδ), Gibbs free energy difference (ΔG), hydrogen ion or hydroxide ion concentration ([H<sup>+</sup>] or [OH<sup>−</sup>]), and xylose conversion is discussed. Different salts dissolved in water result in different pH of the solutions, which affect the mutarotation of xylose, with the nature of both cation and anion. Shortly, the smaller the cation radius is and the larger the anion radius is, the greater the mutarotation rate is. In the dehydration of xylose to furfural in salty solutions, xylose conversion is positively correlated to mutarotation rate, H<sup>+</sup> or OH<sup>−</sup> concentration, and the energy difference between α-xylopyranose and β-xylopyranose. Although the [α]<sub>eqm</sub> of xylose is positively correlated with α/β configuration ratio, there is no obvious correlation with xylose dehydration. The conversion to furfural in chlorides is superior to that in bromines and iodides, which is due to the fact that the pH of chloride salts is smaller than that of the corresponding bromide and iodized salts. Higher H<sup>+</sup> concentration prefers to accelerate the formation of furfural. In basic salt solutions, the xylulose selectivity is higher than that of furfural at the initial stage of reaction. The furfural selectivity and carbon balance are better in acidic condition rather than in basic condition. In H<sub>2</sub>O-MTHF (2-Methyltetrahydrofuran) biphasic system, the optimal furfural selectivity of 81.0 % is achieved at 190 °C in 1 h with the assistance of LiI and a little HCl (0.2 mmol, 8 mmol/L in aqueous phase). A high mutarotation rate represents rapid xylose conversion, but a high furfural selectivity prefers in acidic solutions, which would be perfect if organic solvents were available to form biphasic systems.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109258"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002374","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although the xylose mutarotation and transformation have been investigated largely separately, their relationship has been rarely systematically elaborated. The effect of several factors such as xylose concentration, temperature, and salt concentration, affecting the mutarotation of xylose are discussed. Nine alkali halides (LiCl, NaCl, KCl, LiBr, NaBr, KBr, LiI, NaI, and KI) are used to test salt effects. The relationship between xylose rotation rate constant (kM), specific optical rotation at equilibrium ([α]eqm), α/β ratio, H chemical shift difference (ΔΔδ), Gibbs free energy difference (ΔG), hydrogen ion or hydroxide ion concentration ([H+] or [OH−]), and xylose conversion is discussed. Different salts dissolved in water result in different pH of the solutions, which affect the mutarotation of xylose, with the nature of both cation and anion. Shortly, the smaller the cation radius is and the larger the anion radius is, the greater the mutarotation rate is. In the dehydration of xylose to furfural in salty solutions, xylose conversion is positively correlated to mutarotation rate, H+ or OH− concentration, and the energy difference between α-xylopyranose and β-xylopyranose. Although the [α]eqm of xylose is positively correlated with α/β configuration ratio, there is no obvious correlation with xylose dehydration. The conversion to furfural in chlorides is superior to that in bromines and iodides, which is due to the fact that the pH of chloride salts is smaller than that of the corresponding bromide and iodized salts. Higher H+ concentration prefers to accelerate the formation of furfural. In basic salt solutions, the xylulose selectivity is higher than that of furfural at the initial stage of reaction. The furfural selectivity and carbon balance are better in acidic condition rather than in basic condition. In H2O-MTHF (2-Methyltetrahydrofuran) biphasic system, the optimal furfural selectivity of 81.0 % is achieved at 190 °C in 1 h with the assistance of LiI and a little HCl (0.2 mmol, 8 mmol/L in aqueous phase). A high mutarotation rate represents rapid xylose conversion, but a high furfural selectivity prefers in acidic solutions, which would be perfect if organic solvents were available to form biphasic systems.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".