A penalty method for approximation of the stationary Stokes–Darcy problem

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Wei-Wei Han, Yao-Lin Jiang
{"title":"A penalty method for approximation of the stationary Stokes–Darcy problem","authors":"Wei-Wei Han,&nbsp;Yao-Lin Jiang","doi":"10.1016/j.cam.2024.116272","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the penalty method is studied for the mixed Stokes–Darcy problem, motivated by the penalty method applied to Stokes equation. This work first proposes the penalty Stokes–Darcy model at the continuous level. Then we prove that the solution of the penalty model converges strongly to the original solution as <span><math><mrow><mi>O</mi><mfenced><mrow><mi>ϵ</mi></mrow></mfenced></mrow></math></span> in which the penalty parameter is <span><math><mrow><mi>ϵ</mi><mo>→</mo><mn>0</mn></mrow></math></span>. What is more, the finite element method is used to solve the penalty model and the optimal error estimates are presented. Finally, several numerical tests are carried out to verify our theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the penalty method is studied for the mixed Stokes–Darcy problem, motivated by the penalty method applied to Stokes equation. This work first proposes the penalty Stokes–Darcy model at the continuous level. Then we prove that the solution of the penalty model converges strongly to the original solution as Oϵ in which the penalty parameter is ϵ0. What is more, the finite element method is used to solve the penalty model and the optimal error estimates are presented. Finally, several numerical tests are carried out to verify our theoretical results.

近似静止斯托克斯-达西问题的惩罚法
在本研究中,受应用于斯托克斯方程的惩罚法的启发,对斯托克斯-达西混合问题的惩罚法进行了研究。本文首先提出了连续级的罚分斯托克斯-达西模型。然后证明惩罚模型的解以 Oϵ 强收敛于原始解,其中惩罚参数为 ϵ→0。此外,还使用有限元法求解了惩罚模型,并给出了最佳误差估计值。最后,我们还进行了一些数值测试,以验证我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信