{"title":"Improving the performance of glucose oxidase biofuel cell by methyl red and chitosan composite electrodes","authors":"Facheng Su , Yujyun Wu , Hsiharng Yang","doi":"10.1016/j.biosx.2024.100534","DOIUrl":null,"url":null,"abstract":"<div><p>This research aims to improve the output power of self-pumping glucose enzymatic biofuel cell (EBFC) and modifying the anode. Adding a fixed ratio of methyl red-chitosan (MR-CS) can effectively improve the EBFC efficiency and stability. In addition, chitosan can be obtained from discarded crustacean fishery waste objects such as shrimp and oysters, are also significant to the use of environmentally friendly materials. The catalyst was immobilized on pyrenecarboxaldehyde (PCA), polyethyleneimine (PEI) and multi-wall carbon nanotubes (MWCNT) and combined with glucose oxidase (GOx). Finally, the [PCA/GOx]/PEI/Nafion solution/MWCNT/[MR-CS] catalyst was immobilized on the carbon cloth. Experimental analysis was progressed under the preparation of enzyme-supported electrode to observe the feasibility of the anode electrode. Experiment including Fourier transform infrared spectroscopy (FTIR) to analyze the distribution of functional groups after modification of the carbon cloth electrode, and through the comparison of the ultraviolet–visible spectrometer (UV–Vis), it can be known that the concentration ratio of [MR-CS] is 1:5, the glucose oxidase load can be maximized. Electrochemical analysis (Cyclic Voltammetry, CV) measures the activity of the maximum reaction of the anode material and the corresponding redox peak, and scanning electron microscope (SEM) observes the surface morphology of the modified electrode. Self-pumping glucose enzymatic biofuel cell module was assembled and examined, the results showed that the maximum output power density (MPD) was 2.64 mW/cm<sup>2</sup>.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"21 ","pages":"Article 100534"},"PeriodicalIF":10.6100,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000980/pdfft?md5=d8c83976a0295526b7046246bb69e4d7&pid=1-s2.0-S2590137024000980-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This research aims to improve the output power of self-pumping glucose enzymatic biofuel cell (EBFC) and modifying the anode. Adding a fixed ratio of methyl red-chitosan (MR-CS) can effectively improve the EBFC efficiency and stability. In addition, chitosan can be obtained from discarded crustacean fishery waste objects such as shrimp and oysters, are also significant to the use of environmentally friendly materials. The catalyst was immobilized on pyrenecarboxaldehyde (PCA), polyethyleneimine (PEI) and multi-wall carbon nanotubes (MWCNT) and combined with glucose oxidase (GOx). Finally, the [PCA/GOx]/PEI/Nafion solution/MWCNT/[MR-CS] catalyst was immobilized on the carbon cloth. Experimental analysis was progressed under the preparation of enzyme-supported electrode to observe the feasibility of the anode electrode. Experiment including Fourier transform infrared spectroscopy (FTIR) to analyze the distribution of functional groups after modification of the carbon cloth electrode, and through the comparison of the ultraviolet–visible spectrometer (UV–Vis), it can be known that the concentration ratio of [MR-CS] is 1:5, the glucose oxidase load can be maximized. Electrochemical analysis (Cyclic Voltammetry, CV) measures the activity of the maximum reaction of the anode material and the corresponding redox peak, and scanning electron microscope (SEM) observes the surface morphology of the modified electrode. Self-pumping glucose enzymatic biofuel cell module was assembled and examined, the results showed that the maximum output power density (MPD) was 2.64 mW/cm2.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.