Activity and motion characteristics on the southern segment of the Red River fault zone, Yunnan province, China

IF 2.6 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Xi Li , Chenxu Wang , Lichun Chen , Qingyun Zhou , Weidong Luo , Jun Guo
{"title":"Activity and motion characteristics on the southern segment of the Red River fault zone, Yunnan province, China","authors":"Xi Li ,&nbsp;Chenxu Wang ,&nbsp;Lichun Chen ,&nbsp;Qingyun Zhou ,&nbsp;Weidong Luo ,&nbsp;Jun Guo","doi":"10.1016/j.jsg.2024.105245","DOIUrl":null,"url":null,"abstract":"<div><p>The longer time for recording large earthquakes on a plate boundary fault, the better that understanding of large earthquake rupture behavior and seismic hazard on the fault zone. However, large earthquakes (<em>M</em> ≥ 7) are rarely recorded on the boundary fault with slow slipping rate, such as the Red River fault zone (RRFZ), which is an important plate boundary fault that marks the southwestern boundary of the Yangtze platform or south China block. There have been no large earthquake records on the southern segments (including the segment in Vietnam) of the RRFZ since historical earthquake records began in 886 AD, except the 1652 Midu <em>M</em> 7 earthquake and the 1925 Dali <em>M</em> 7 earthquake on the northern segment. The southern segment of the RRFZ will not have a large earthquake in the future or as a large earthquake seismogenic zone with a long period of recurrence, remains controversial, in part because of the absence of constraints from geological evidence. This controversial seriously restricts the risk assessment of future large earthquakes on the southern segment of the RRFZ. By careful interpretations of high resolution remote sensing images, in combination with a detailed field geological and geomorphic survey, we found a series of fault valleys and bedrock outcrops from Gasha toYaojie and Yuangjiang to Hekou on the southern segment of the RRFZ. Multiple trench excavation and radiocarbon dating sample analyses show that the mid valley trace in the southern segment of the RRFZ is an active fault. Geological and geomorphic evidence from Gasha to Yaojie and Yuanjiang to Hekou indicate that the mid valley trace in the southern segment of the RRFZ exhibits dip slip and dextral strike slip motion characteristics. This result is inconsistent with those of previous studies that the mid valley trace is purely strike slip. Furthermore, trenches opened on the range front trace in the southern segment of the RRFZ in Ejia are found to still be active, differing from previous studies. Thus, the seismic hazard on the southern segment of the RRFZ should be reevaluated.</p></div>","PeriodicalId":50035,"journal":{"name":"Journal of Structural Geology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191814124001974","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The longer time for recording large earthquakes on a plate boundary fault, the better that understanding of large earthquake rupture behavior and seismic hazard on the fault zone. However, large earthquakes (M ≥ 7) are rarely recorded on the boundary fault with slow slipping rate, such as the Red River fault zone (RRFZ), which is an important plate boundary fault that marks the southwestern boundary of the Yangtze platform or south China block. There have been no large earthquake records on the southern segments (including the segment in Vietnam) of the RRFZ since historical earthquake records began in 886 AD, except the 1652 Midu M 7 earthquake and the 1925 Dali M 7 earthquake on the northern segment. The southern segment of the RRFZ will not have a large earthquake in the future or as a large earthquake seismogenic zone with a long period of recurrence, remains controversial, in part because of the absence of constraints from geological evidence. This controversial seriously restricts the risk assessment of future large earthquakes on the southern segment of the RRFZ. By careful interpretations of high resolution remote sensing images, in combination with a detailed field geological and geomorphic survey, we found a series of fault valleys and bedrock outcrops from Gasha toYaojie and Yuangjiang to Hekou on the southern segment of the RRFZ. Multiple trench excavation and radiocarbon dating sample analyses show that the mid valley trace in the southern segment of the RRFZ is an active fault. Geological and geomorphic evidence from Gasha to Yaojie and Yuanjiang to Hekou indicate that the mid valley trace in the southern segment of the RRFZ exhibits dip slip and dextral strike slip motion characteristics. This result is inconsistent with those of previous studies that the mid valley trace is purely strike slip. Furthermore, trenches opened on the range front trace in the southern segment of the RRFZ in Ejia are found to still be active, differing from previous studies. Thus, the seismic hazard on the southern segment of the RRFZ should be reevaluated.

中国云南省红河断裂带南段的活动和运动特征
在板块边界断层上记录大地震的时间越长,对断层带大地震破裂行为和地震危害的了解就越清楚。然而,在滑动速度较慢的边界断层上很少记录到大地震(M ≥ 7),如红河断层带(RRFZ),它是长江地台或华南地块西南边界的重要板块边界断层。自公元 886 年有历史地震记录以来,红河断裂带南段(包括越南段)除发生过 1652 年弥渡 M7 级地震和 1925 年大理 M7 级地震外,没有发生过其他大地震。南段地区未来是否会发生大地震或作为大地震多发区仍存在争议,部分原因是缺乏地质证据的制约。这种争议性严重限制了对 RRFZ 南段未来大地震的风险评估。通过对高分辨率遥感图像的仔细判读,并结合详细的野外地质和地貌调查,我们在 RRFZ 南段发现了从嘎沙到窑街、从元江到河口的一系列断层河谷和基岩露头。多条沟槽发掘和放射性碳年代测定样本分析表明,南段断裂带的中段谷痕是一条活动断层。从嘎沙到窑街、从元江到河口的地质和地貌证据表明,沅水断裂带南段的中游谷痕表现出倾覆滑动和右旋走向滑动运动特征。这一结果与以往研究认为中谷地道纯属走向滑动的结果不一致。此外,在二甲 RRFZ 南段的山脉前沿迹线上开辟的沟槽仍处于活动状态,这与之前的研究不同。因此,应重新评估 RRFZ 南段的地震危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Geology
Journal of Structural Geology 地学-地球科学综合
CiteScore
6.00
自引率
19.40%
发文量
192
审稿时长
15.7 weeks
期刊介绍: The Journal of Structural Geology publishes process-oriented investigations about structural geology using appropriate combinations of analog and digital field data, seismic reflection data, satellite-derived data, geometric analysis, kinematic analysis, laboratory experiments, computer visualizations, and analogue or numerical modelling on all scales. Contributions are encouraged to draw perspectives from rheology, rock mechanics, geophysics,metamorphism, sedimentology, petroleum geology, economic geology, geodynamics, planetary geology, tectonics and neotectonics to provide a more powerful understanding of deformation processes and systems. Given the visual nature of the discipline, supplementary materials that portray the data and analysis in 3-D or quasi 3-D manners, including the use of videos, and/or graphical abstracts can significantly strengthen the impact of contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信