Zhuoyin Deng , Lianchao Wang , Tianqi Chen , Ruiying Fu , Cheng Zhang , Kuaibing Wang
{"title":"Stable metal-organic frameworks with Zr6 clusters for alkaline battery-supercapacitor devices","authors":"Zhuoyin Deng , Lianchao Wang , Tianqi Chen , Ruiying Fu , Cheng Zhang , Kuaibing Wang","doi":"10.1016/j.jssc.2024.125009","DOIUrl":null,"url":null,"abstract":"<div><p>An alkaline-stable Zr-based material, PCN-777, has been elected and solvothermally prepared by reacting ZrOCl<sub>2</sub> with the tripodal linker 4,4′,4″-<em>s</em>-triazine-2,4,6-triyl-tribenzoate (H<sub>3</sub>TATB). This powder material exhibits an irregular octahedron motif, providing good stability and high-power density when it is employed as electrode material for supercapacitors (SCs). The results indicate that the specific capacity, under a three-electrode configuration, is 291.9 C g<sup>−1</sup> at a current density of 1.5 A g<sup>−1</sup> obtained from the chronopotentiometry charge-discharge test. Assembled into a two-electrode system with activated carbon (AC) negative, the corresponding battery-supercapacitor device denoted as PCN-777//AC delivers a specific capacitance of 48.72 F g<sup>−1</sup> at the constant current-density value of 0.5 A g<sup>−1</sup>. Besides, this device delivered a maximum energy density of 17.3 Wh kg<sup>−1</sup> within the power-density value of 399 W kg<sup>−1</sup>, an excellent alkaline-endurance life during 2000 unceasing cycles and practical applications in powering LEDs, suggesting the potential practicality under strong alkaline surroundings. Furthermore, the structural alteration before and after long-term cycling has also been investigated.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"340 ","pages":"Article 125009"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459624004638","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
An alkaline-stable Zr-based material, PCN-777, has been elected and solvothermally prepared by reacting ZrOCl2 with the tripodal linker 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoate (H3TATB). This powder material exhibits an irregular octahedron motif, providing good stability and high-power density when it is employed as electrode material for supercapacitors (SCs). The results indicate that the specific capacity, under a three-electrode configuration, is 291.9 C g−1 at a current density of 1.5 A g−1 obtained from the chronopotentiometry charge-discharge test. Assembled into a two-electrode system with activated carbon (AC) negative, the corresponding battery-supercapacitor device denoted as PCN-777//AC delivers a specific capacitance of 48.72 F g−1 at the constant current-density value of 0.5 A g−1. Besides, this device delivered a maximum energy density of 17.3 Wh kg−1 within the power-density value of 399 W kg−1, an excellent alkaline-endurance life during 2000 unceasing cycles and practical applications in powering LEDs, suggesting the potential practicality under strong alkaline surroundings. Furthermore, the structural alteration before and after long-term cycling has also been investigated.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.