{"title":"Existence of global weak solutions and simulations to a Dirichlet problem for a generalized Swift–Hohenberg equation","authors":"Fan Wu , Guomei Zhao","doi":"10.1016/j.nonrwa.2024.104217","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we shall investigate an initial–boundary value problem of a generalized Swift–Hohenberg model subject to homogeneous Dirichlet boundary conditions in two spatial dimensions. The model consists of a nonlinear term of the form <span><math><mrow><msup><mrow><mi>ψ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>Δ</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>ψ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> in the free energy functional, which is used to model the stability of fronts between hexagons and squares in pinning effect. We first prove the global-in-time existence and uniqueness of weak solutions to this initial–boundary value problem in the case with the parameter <span><math><mrow><mi>β</mi><mo><</mo><mn>0</mn></mrow></math></span>, where we employ the energy method and make use of various techniques to derive delicate <em>a priori</em> estimates. At the end, a few numerical experiments of the model are also performed to study the competition between hexagons and squares.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001561","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we shall investigate an initial–boundary value problem of a generalized Swift–Hohenberg model subject to homogeneous Dirichlet boundary conditions in two spatial dimensions. The model consists of a nonlinear term of the form in the free energy functional, which is used to model the stability of fronts between hexagons and squares in pinning effect. We first prove the global-in-time existence and uniqueness of weak solutions to this initial–boundary value problem in the case with the parameter , where we employ the energy method and make use of various techniques to derive delicate a priori estimates. At the end, a few numerical experiments of the model are also performed to study the competition between hexagons and squares.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.