Synergistic effect of rGO decoration on ZnFe2O4 nanorods for low concentration detection of ammonia at room temperature with high selectivity and response
IF 8.3 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Synergistic effect of rGO decoration on ZnFe2O4 nanorods for low concentration detection of ammonia at room temperature with high selectivity and response","authors":"Thangavel Ravikumar , Logu Thirumalaisamy , Kalainathan Sivaperuman","doi":"10.1016/j.surfin.2024.105076","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an improved sensor for detecting ammonia (NH₃) gas using Zinc Ferrite (ZF) decorated with reduced graphene oxide (rGO) films, prepared through spray pyrolysis and spin coating methods. NH₃, a major pollutant in fertilizer production, poses significant health and environmental risks even at low concentrations. Therefore, detecting NH₃ below exposure limits (25 ppm) is crucial for protecting ecosystems and human health. The prepared optimal rGO concentration and ZF (ZFG1.5) sensor exhibit excellent NH₃ response (45) towards 1 ppm, which is sevenfold better than the ZF film without rGO decoration. This enhancement is attributed to the ZF nanorods on the surface of the rGO, establishing a firm surface interaction with the ZF. This configuration accelerates electron transfer and promotes the adsorption/desorption of gas molecules, further contributing to the improved gas-solid interaction. Besides, the sensor demonstrated excellent repeatability (1.15 %), long-term stability, and high humidity tolerance (coefficient of variation 1.48 %). Additionally, the ZFG1.5 sensor showed a distinct selectivity for NH₃ in a mixed gas environment. The ZFG1.5 sensor is promising for real-time NH₃ monitoring below exposure limits, making it a valuable tool for environmental and health safety.</p></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246802302401232X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces an improved sensor for detecting ammonia (NH₃) gas using Zinc Ferrite (ZF) decorated with reduced graphene oxide (rGO) films, prepared through spray pyrolysis and spin coating methods. NH₃, a major pollutant in fertilizer production, poses significant health and environmental risks even at low concentrations. Therefore, detecting NH₃ below exposure limits (25 ppm) is crucial for protecting ecosystems and human health. The prepared optimal rGO concentration and ZF (ZFG1.5) sensor exhibit excellent NH₃ response (45) towards 1 ppm, which is sevenfold better than the ZF film without rGO decoration. This enhancement is attributed to the ZF nanorods on the surface of the rGO, establishing a firm surface interaction with the ZF. This configuration accelerates electron transfer and promotes the adsorption/desorption of gas molecules, further contributing to the improved gas-solid interaction. Besides, the sensor demonstrated excellent repeatability (1.15 %), long-term stability, and high humidity tolerance (coefficient of variation 1.48 %). Additionally, the ZFG1.5 sensor showed a distinct selectivity for NH₃ in a mixed gas environment. The ZFG1.5 sensor is promising for real-time NH₃ monitoring below exposure limits, making it a valuable tool for environmental and health safety.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.