Dynamics of a size-structured predator–prey model with chemotaxis mechanism

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xuan Tian , Shangjiang Guo
{"title":"Dynamics of a size-structured predator–prey model with chemotaxis mechanism","authors":"Xuan Tian ,&nbsp;Shangjiang Guo","doi":"10.1016/j.nonrwa.2024.104218","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with a size-structured diffusive predator–prey model with chemotaxis mechanism. The existence, linearized stability and monotonicity with respect to the growth rates of boundary steady-state solutions are analyzed. Moreover, the global stability of trivial steady-state solution under certain conditions is proved by constructing Lyapunov functional. We investigate the local and global bifurcations of positive steady-state solutions that emanate from semi-trivial steady-state solutions using Lyapunov–Schmidt reduction and bifurcation techniques when the fertility intensity of a predator or prey is used as a bifurcation parameter. It is shown that the nonlinear nonlocal chemotaxis term can lead to the emergence of Allee effect.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001573","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with a size-structured diffusive predator–prey model with chemotaxis mechanism. The existence, linearized stability and monotonicity with respect to the growth rates of boundary steady-state solutions are analyzed. Moreover, the global stability of trivial steady-state solution under certain conditions is proved by constructing Lyapunov functional. We investigate the local and global bifurcations of positive steady-state solutions that emanate from semi-trivial steady-state solutions using Lyapunov–Schmidt reduction and bifurcation techniques when the fertility intensity of a predator or prey is used as a bifurcation parameter. It is shown that the nonlinear nonlocal chemotaxis term can lead to the emergence of Allee effect.

具有趋化机制的大小结构捕食者-猎物模型的动力学研究
本文研究了一个具有趋化机制的大小结构扩散捕食者-猎物模型。分析了边界稳态解的存在性、线性化稳定性和增长率的单调性。此外,还通过构建 Lyapunov 函数证明了微稳态解在特定条件下的全局稳定性。当捕食者或被捕食者的生育强度被用作分岔参数时,我们利用 Lyapunov-Schmidt 还原和分岔技术研究了由半琐碎稳态解产生的正稳态解的局部和全局分岔。研究表明,非线性非局部趋化项会导致阿利效应的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信