Better understanding fall risk: AI-based computer vision for contextual gait assessment

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jason Moore , Peter McMeekin , Samuel Stuart , Rosie Morris , Yunus Celik , Richard Walker , Victoria Hetherington , Alan Godfrey
{"title":"Better understanding fall risk: AI-based computer vision for contextual gait assessment","authors":"Jason Moore ,&nbsp;Peter McMeekin ,&nbsp;Samuel Stuart ,&nbsp;Rosie Morris ,&nbsp;Yunus Celik ,&nbsp;Richard Walker ,&nbsp;Victoria Hetherington ,&nbsp;Alan Godfrey","doi":"10.1016/j.maturitas.2024.108116","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378512224002111/pdfft?md5=91997a03b833ea6d9eb7459bd0cdee2b&pid=1-s2.0-S0378512224002111-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378512224002111","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary research to better understand free-living fall risk assessment in Parkinson's disease (PD) often relies on the use of wearable inertial-based measurement units (IMUs) to quantify useful temporal and spatial gait characteristics (e.g., step time, step length). Although use of IMUs is useful to understand some intrinsic PD fall-risk factors, their use alone is limited as they do not provide information on extrinsic factors (e.g., obstacles). Here, we update on the use of ergonomic wearable video-based eye-tracking glasses coupled with AI-based computer vision methodologies to provide information efficiently and ethically in free-living home-based environments to better understand IMU-based data in a small group of people with PD. The use of video and AI within PD research can be seen as an evolutionary step to improve methods to understand fall risk more comprehensively.

更好地了解跌倒风险:基于人工智能的计算机视觉进行情境步态评估
目前,为更好地了解帕金森病(PD)患者自由生活时跌倒风险评估的研究通常依赖于使用可穿戴式惯性测量单元(IMU)来量化有用的时间和空间步态特征(如步幅、步长)。虽然使用惯性测量单元有助于了解某些内在的肢体残疾跌倒风险因素,但由于它们不能提供外在因素(如障碍物)的信息,因此仅使用它们是有局限性的。在此,我们将介绍使用符合人体工程学的可穿戴式视频眼动跟踪眼镜,结合基于人工智能的计算机视觉方法,在自由生活的家庭环境中高效、道德地提供信息,以更好地了解一小群帕金森病患者基于 IMU 的数据。在帕金森氏症研究中使用视频和人工智能可视为一种进化步骤,有助于改进方法,更全面地了解跌倒风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信