{"title":"Molecular interactions in ethyl caprate and 2-alcohol: Extended hard sphere framework","authors":"Mohammad Almasi","doi":"10.1016/j.jtice.2024.105753","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The study investigates the liquid densities and viscosities of Ethyl caprate (EC) combined with various 2-alkanols across a temperature spectrum of 293.15 to 323.15 K, aiming to understand the intermolecular interactions and deviations from ideal behavior.</p></div><div><h3>Methods</h3><p>Experimental density and viscosity for the mixtures were measured with the SVM Stabinger viscometer. A modified rough hard-sphere theory was employed to model the viscosity of pure substances and binary liquids, incorporating temperature-dependent parameters.</p></div><div><h3>Significant Findings</h3><p>: All examined mixtures exhibited positive excess molar volumes. The modified rough hard-sphere model demonstrated a maximum viscosity error of 4.12 % for 2-hexanol in the temperature range of 293 to 323 K. For binary mixtures, the calculated values closely matched experimental data, with a maximum deviation of 3.51 % observed for the EC + 2-butanol mixture, highlighting the model's predictive accuracy.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105753"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004115","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The study investigates the liquid densities and viscosities of Ethyl caprate (EC) combined with various 2-alkanols across a temperature spectrum of 293.15 to 323.15 K, aiming to understand the intermolecular interactions and deviations from ideal behavior.
Methods
Experimental density and viscosity for the mixtures were measured with the SVM Stabinger viscometer. A modified rough hard-sphere theory was employed to model the viscosity of pure substances and binary liquids, incorporating temperature-dependent parameters.
Significant Findings
: All examined mixtures exhibited positive excess molar volumes. The modified rough hard-sphere model demonstrated a maximum viscosity error of 4.12 % for 2-hexanol in the temperature range of 293 to 323 K. For binary mixtures, the calculated values closely matched experimental data, with a maximum deviation of 3.51 % observed for the EC + 2-butanol mixture, highlighting the model's predictive accuracy.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.