Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight

IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Wu , Wanyue Wang , Jiacheng Huang , Xin Ren , Xuesong Zhao , Tianyu Zhou
{"title":"Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight","authors":"Tao Wu ,&nbsp;Wanyue Wang ,&nbsp;Jiacheng Huang ,&nbsp;Xin Ren ,&nbsp;Xuesong Zhao ,&nbsp;Tianyu Zhou","doi":"10.1016/j.jscs.2024.101940","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoS<sub>x</sub>-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoS<sub>x</sub>-rGO sample possesses superior specific surface area of 306.0 m<sup>2</sup>/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e<sup>−</sup>, •OH and SO<sub>4</sub><sup>•−</sup> make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101940"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001352/pdfft?md5=469ab44a6f756711939d39388f5c6f01&pid=1-s2.0-S1319610324001352-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001352","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoSx-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoSx-rGO sample possesses superior specific surface area of 306.0 m2/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e, •OH and SO4•− make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.

通过可见光耦合 PMS 激活制造三维分层空心 CoAl-LDHs@CoSx-rGO 球花降解磺胺甲噁唑:性能和机理见解
磺胺甲噁唑(SMX)是一种应用广泛的抗菌药物,同时也是一种严重威胁人类和生态系统健康的污染物。本研究首次定制了一种三维分层空心球-花结构催化剂(CoAl-LDHs@CoSx-rGO),通过可见光耦合 PMS 激活高效降解 SMX。一系列表征结果表明,目标催化剂制备成功,优化后的 0.1CoAl-LDHs@CoSx-rGO 样品具有 306.0 m2/g 的优异比表面积、更高的光电流响应和更低的电化学阻抗。更重要的是,通过可见光耦合 PMS 激活,0.5 g/L 的样品可在 50 分钟内降解 98.59 % 的 SMX,且经过 7 个降解循环后,降解率仅下降了 8.49 %。对影响降解率的一系列参数进行了详细优化。捕获实验和 ESR 表明,e-、-OH 和 SO4-是降解的主要成分,可见光耦合 PMS 激活产生的信号比单独的可见光或 PMS 系统更强。通过 LC-MS、TEST 毒性评估和理论计算,阐明了降解途径和中间毒性。该研究为设计具有高暴露活性位点的催化剂提供了一种新方法,可有效去除环境水中的 SMX。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Saudi Chemical Society
Journal of Saudi Chemical Society CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
8.90
自引率
1.80%
发文量
120
审稿时长
38 days
期刊介绍: Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to: •Inorganic chemistry •Physical chemistry •Organic chemistry •Analytical chemistry Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信