Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight
Tao Wu , Wanyue Wang , Jiacheng Huang , Xin Ren , Xuesong Zhao , Tianyu Zhou
{"title":"Fabricating 3D hierarchical hollow CoAl-LDHs@CoSx-rGO ball-flower for degrading sulfamethoxazole via visible-light coupling PMS activation: Performance and mechanism insight","authors":"Tao Wu , Wanyue Wang , Jiacheng Huang , Xin Ren , Xuesong Zhao , Tianyu Zhou","doi":"10.1016/j.jscs.2024.101940","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoS<sub>x</sub>-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoS<sub>x</sub>-rGO sample possesses superior specific surface area of 306.0 m<sup>2</sup>/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e<sup>−</sup>, •OH and SO<sub>4</sub><sup>•−</sup> make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101940"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001352/pdfft?md5=469ab44a6f756711939d39388f5c6f01&pid=1-s2.0-S1319610324001352-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001352","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfamethoxazole (SMX) is an extensively applied antibacterial drug, and it is also a pollutant that poses a serious threat to human and ecosystem health. In this research, a 3D hierarchical hollow ball-flower structure catalyst (CoAl-LDHs@CoSx-rGO) was tailored for the first time to efficiently degrade SMX via visible light coupling PMS activation. A series of characterizations confirm that the target catalyst is successfully prepared and the optimized 0.1CoAl-LDHs@CoSx-rGO sample possesses superior specific surface area of 306.0 m2/g, and significantly higher photocurrent response and lower electrochemical impedance. More importantly, 0.5 g/L of the sample can degrade 98.59 % of SMX within 50 min via visible light coupling PMS activation, and after 7 degradation cycles, the degradation rate only decreased by 8.49 %. A series of parameters that affect degradation rate have been optimized in detail. Capture experiments and ESR indicate that e−, •OH and SO4•− make major contributions to degradation, and visible light coupling PMS activation generates stronger signals than alone visible-light or PMS system. LC-MS, TEST toxicity assessment and theoretical calculation were conducted to elucidate degradation route and intermediate toxicity. The research provides a new approach to design catalysts with highly exposed activity sites for efficiently removing SMX from environmental water.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.