{"title":"Dissolving microneedle patches for delivery of amniotic mesenchymal stem cell metabolite products for skin regeneration in UV-aging induced mice","authors":"","doi":"10.1016/j.ejpb.2024.114482","DOIUrl":null,"url":null,"abstract":"<div><p>Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9–10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30 % (MN30), 25 % (MN25), and 20 % (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 h, with MN20 exhibiting the highest deposition (55.94 ± 12.34 %). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003084","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Microneedles offer a promising solution to enhancing dermal delivery of amniotic mesenchymal stem cell metabolite product (AMSC-MP), which contains hydrophilic protein components with high molecular weight, for the purposes of skin rejuvenation and improving human health. This study aimed to evaluate the physicochemical characteristics and in vivo efficacy of AMSC-MP-loaded microneedle patches for effectively regenerating skin tissues in UV-aging induced mice. Dissolving microneedle patches, composed of polyvinyl alcohol with an MW of 9–10 kDa and polyvinylpyrrolidone with an MW of 56 kDa, were fabricated using the double-casting method at three AMSC-MP concentrations: i.e., 30 % (MN30), 25 % (MN25), and 20 % (MN20). The microneedles patches were then evaluated for morphological, mechanical resistance, and insertion properties. An ex vivo release study was also conducted using the Franz cell method, and in vivo efficacy and irritation were then determined through collagen density scores, fibroblast cell counts, and skin irritation studies of UV-aging induced mice. The AMSC-MP microneedles displayed a pyramidal shape with 500 µm sharp tips. Mechanical testing revealed that MN30 achieved its deepest insertion into Parafilm® M (447.44 ± 37.21 µm), while MN25 achieved its deepest insertion into full-thickness porcine skin (717.92 ± 25.40 µm). The study revealed a controlled EGF release for up to 24 h, with MN20 exhibiting the highest deposition (55.94 ± 12.34 %). These findings demonstrate the successful penetration of microneedles through the stratum corneum and viable epidermis. Collagen density scores and fibroblast cell counts were significantly higher in all microneedle formulations than the control, with MN30 having the highest values. Inflammatory cell counts indicated minimal presence suggesting non-irritation in the in vivo study. Dissolving microneedle patches exhibited favorable characteristics and efficiently delivered AMSC-MP with minimal potential for irritation, providing potential technology for delivering biological anti-aging agents for the purposes of fostering skin regeneration.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.