Effect of thickness ratio on microstructure evolution and coordinated behavior of Mg/Al composite plates in one-pass asymmetric rolling with differential temperature rolls

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
{"title":"Effect of thickness ratio on microstructure evolution and coordinated behavior of Mg/Al composite plates in one-pass asymmetric rolling with differential temperature rolls","authors":"","doi":"10.1016/j.matchar.2024.114366","DOIUrl":null,"url":null,"abstract":"<div><p>To explore how varying matrix thicknesses influence interfacial morphology, microstructure, and mechanical properties of Mg/Al composite plates, this study prepared composite plates with distinct thickness ratios using an asymmetric rolling process featuring differential temperature rolls. The findings indicate that the Mg alloy largely exhibits significant recrystallization and sub-grained, while the Al alloy largely demonstrates a sub-grained characteristic. Notably, there exists a strong positive correlation between bonding strength at the interface and thickness ratio. As the thickness ratio increases, enhanced shear deformation at the interface triggers more slip system initiation, resulting in a gradual reduction of texture intensity in both the Mg and Al layers. Specifically, when the AZ31B/Al6061 thickness ratio reaches 5, the recrystallization level of the Mg layer is relatively elevated, accompanied by a fine and uniform grain size in the Al layer. This situation decreases the likelihood of stress concentration at the interface, which results in exhibiting relatively optimal elongation and bonding strength.</p></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324007472","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

To explore how varying matrix thicknesses influence interfacial morphology, microstructure, and mechanical properties of Mg/Al composite plates, this study prepared composite plates with distinct thickness ratios using an asymmetric rolling process featuring differential temperature rolls. The findings indicate that the Mg alloy largely exhibits significant recrystallization and sub-grained, while the Al alloy largely demonstrates a sub-grained characteristic. Notably, there exists a strong positive correlation between bonding strength at the interface and thickness ratio. As the thickness ratio increases, enhanced shear deformation at the interface triggers more slip system initiation, resulting in a gradual reduction of texture intensity in both the Mg and Al layers. Specifically, when the AZ31B/Al6061 thickness ratio reaches 5, the recrystallization level of the Mg layer is relatively elevated, accompanied by a fine and uniform grain size in the Al layer. This situation decreases the likelihood of stress concentration at the interface, which results in exhibiting relatively optimal elongation and bonding strength.

厚度比对采用差温轧辊进行单程不对称轧制的镁铝复合板微观结构演变和协调行为的影响
为了探索不同基体厚度如何影响镁/铝复合材料板的界面形态、微观结构和机械性能,本研究采用非对称轧制工艺,以温差轧制为特点,制备了不同厚度比的复合材料板。研究结果表明,镁合金主要表现出明显的再结晶和亚晶粒化,而铝合金主要表现出亚晶粒化特征。值得注意的是,界面结合强度与厚度比之间存在很强的正相关性。随着厚度比的增加,界面处剪切变形的增强会引发更多的滑移系统,从而导致镁层和铝层的纹理强度逐渐降低。具体来说,当 AZ31B/Al6061 厚度比达到 5 时,镁层的再结晶水平相对升高,同时铝层的晶粒细小均匀。这种情况降低了界面应力集中的可能性,从而表现出相对最佳的伸长率和结合强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信