Bo-Ram Park , Junhee No , Hyeonbin Oh , Chan Soon Park , Kwan-Mo You , Legesse Shiferaw Chewaka
{"title":"Exploring puffed rice as a novel ink for 3D food printing: Rheological characterization and printability analysis","authors":"Bo-Ram Park , Junhee No , Hyeonbin Oh , Chan Soon Park , Kwan-Mo You , Legesse Shiferaw Chewaka","doi":"10.1016/j.jfoodeng.2024.112313","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a novel approach by using puffed rice (PR) as a sustainable and innovative ink for 3D food printing. Due to gelatinization and dextrinization, PR saw notable water absorption and solubility gains, with a modest viscosity uptick from 39.2 to 49.9 RVU, sharply contrasting Native rice (NR)'s jump from 128.9 to 167.8 RVU, emphasizing PR's minimal retrogradation. Gelatinized rice (GR) demonstrates similar stability in viscosity changes as PR, yet it requires more water and extended processing times for gelatinization. Conversely, PR's puffing process, which eliminates the need for water, offers quicker preparation and notable environmental benefits. Rheological analysis at 25% PR concentration reveals an optimal balance of viscosity (<em>η</em>, 897.4 Pa s), yield stress (<em>τ</em><sub><em>y</em></sub>, 2471.3 Pa), and flow stress (<em>τ</em><sub><em>f</em></sub>, 1509.2 Pa), demonstrating superior viscoelastic properties that facilitate enhanced printability and shape fidelity. Texture Profile Analysis outcomes reveals that PR significantly enhances key textural properties including hardness, adhesiveness, and springiness at this specific concentration. These findings highlight PR's potential as an eco-friendly and efficient ink choice for 3D-printed food products, providing enhanced performance and sustainability compared to GR and NR.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112313"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0260877424003790/pdfft?md5=98c419a3afb61c0f5c0619f9912f532e&pid=1-s2.0-S0260877424003790-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003790","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel approach by using puffed rice (PR) as a sustainable and innovative ink for 3D food printing. Due to gelatinization and dextrinization, PR saw notable water absorption and solubility gains, with a modest viscosity uptick from 39.2 to 49.9 RVU, sharply contrasting Native rice (NR)'s jump from 128.9 to 167.8 RVU, emphasizing PR's minimal retrogradation. Gelatinized rice (GR) demonstrates similar stability in viscosity changes as PR, yet it requires more water and extended processing times for gelatinization. Conversely, PR's puffing process, which eliminates the need for water, offers quicker preparation and notable environmental benefits. Rheological analysis at 25% PR concentration reveals an optimal balance of viscosity (η, 897.4 Pa s), yield stress (τy, 2471.3 Pa), and flow stress (τf, 1509.2 Pa), demonstrating superior viscoelastic properties that facilitate enhanced printability and shape fidelity. Texture Profile Analysis outcomes reveals that PR significantly enhances key textural properties including hardness, adhesiveness, and springiness at this specific concentration. These findings highlight PR's potential as an eco-friendly and efficient ink choice for 3D-printed food products, providing enhanced performance and sustainability compared to GR and NR.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.