{"title":"Robust anti-icing double-layer superamphiphobic composite coatings for heat exchangers","authors":"","doi":"10.1016/j.porgcoat.2024.108814","DOIUrl":null,"url":null,"abstract":"<div><p>The formation and accumulation of ice on the heat exchangers of air conditioners significantly reduce the performance issues, as well as the stability and heating efficiency. Superhydrophobic anti-icing coatings passively achieve multifunctional anti-icing properties by minimizing water droplet contact and promoting Cassie ice formation. However, long-term performance in frigid environments remains challenge for these coatings due to limitations in anti-icing durability and mechanical properties. Herein, a double-layer polymer-SiC/F-SiO<sub>2</sub> superamphiphobic composite coating is developed. The bottom layer comprises a polymer PAI and SiC composite, and the top layer consists of F-SiO<sub>2</sub>. The composite coating demonstrates superior performance in simultaneous frost prevention, low ice adhesion, easy frost removal, exceptional mechanical strength, and long-lasting anti-icing durability. Our developed double-layer coating exhibits low ice adhesion strength down to 9.2 kPa, remarkable mechanical resilience against scratching and flushing, and delayed frost properties. These superior anti-icing properties, manifested by both lower adhesion strength and improved frost repellency, lead to a doubling of frosting time and the easier removal of ice on coated heat exchangers compared to traditional units. The development of this novel superamphiphobic composite coating provides a practical approach to creating durable anti-icing materials, leading to significant improvements in air conditioner performance.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006064","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The formation and accumulation of ice on the heat exchangers of air conditioners significantly reduce the performance issues, as well as the stability and heating efficiency. Superhydrophobic anti-icing coatings passively achieve multifunctional anti-icing properties by minimizing water droplet contact and promoting Cassie ice formation. However, long-term performance in frigid environments remains challenge for these coatings due to limitations in anti-icing durability and mechanical properties. Herein, a double-layer polymer-SiC/F-SiO2 superamphiphobic composite coating is developed. The bottom layer comprises a polymer PAI and SiC composite, and the top layer consists of F-SiO2. The composite coating demonstrates superior performance in simultaneous frost prevention, low ice adhesion, easy frost removal, exceptional mechanical strength, and long-lasting anti-icing durability. Our developed double-layer coating exhibits low ice adhesion strength down to 9.2 kPa, remarkable mechanical resilience against scratching and flushing, and delayed frost properties. These superior anti-icing properties, manifested by both lower adhesion strength and improved frost repellency, lead to a doubling of frosting time and the easier removal of ice on coated heat exchangers compared to traditional units. The development of this novel superamphiphobic composite coating provides a practical approach to creating durable anti-icing materials, leading to significant improvements in air conditioner performance.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.