{"title":"Breath of impact: Unveiling the dynamics of exhalation-driven deposition of polydisperse particles in lung across varied physical activities","authors":"","doi":"10.1016/j.powtec.2024.120283","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous deposition of workplace pollutant particles on lung airways during respiratory actions seriously threatens the lung health of persons performing tasks in polluted environments. This study aims to analyze the exhalation-driven deposition of fine and coarse occupational pollutant particles in polydisperse form. Computer simulations are conducted to study the patterns of deposition of grain dust, coal fly ash, and bituminous coal particles. Key findings include the observation of early emergence of secondary flows in the real model, a notable shift in deposition patterns towards the post-bifurcation zones, and influence of physical activity intensity on particle deposition. Additionally, deposition primarily occurs near cranial ridge during inhalation, while exhalation leads to deposition in pre- and post-bifurcation zones. PM2.5 deposition is minimal and random in idealized model but becomes more significant and consistent in real model. This research underscores the increased risk of lung diseases for workers in polluted environments during vigorous activity.</p></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032591024009276/pdfft?md5=ce154dff48afeaca11a855c78980e08f&pid=1-s2.0-S0032591024009276-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024009276","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous deposition of workplace pollutant particles on lung airways during respiratory actions seriously threatens the lung health of persons performing tasks in polluted environments. This study aims to analyze the exhalation-driven deposition of fine and coarse occupational pollutant particles in polydisperse form. Computer simulations are conducted to study the patterns of deposition of grain dust, coal fly ash, and bituminous coal particles. Key findings include the observation of early emergence of secondary flows in the real model, a notable shift in deposition patterns towards the post-bifurcation zones, and influence of physical activity intensity on particle deposition. Additionally, deposition primarily occurs near cranial ridge during inhalation, while exhalation leads to deposition in pre- and post-bifurcation zones. PM2.5 deposition is minimal and random in idealized model but becomes more significant and consistent in real model. This research underscores the increased risk of lung diseases for workers in polluted environments during vigorous activity.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.