Evolving intra-and inter-session graph fusion for next item recommendation

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jain-Wun Su , Chiao-Ting Chen , De-Ren Toh , Szu-Hao Huang
{"title":"Evolving intra-and inter-session graph fusion for next item recommendation","authors":"Jain-Wun Su ,&nbsp;Chiao-Ting Chen ,&nbsp;De-Ren Toh ,&nbsp;Szu-Hao Huang","doi":"10.1016/j.inffus.2024.102691","DOIUrl":null,"url":null,"abstract":"<div><p>Next-item recommendation aims to predict users’ subsequent behaviors using their historical sequence data. However, sessions are often anonymous, short, and time-varying, making it challenging to capture accurate and evolving item representations. Existing methods using static graphs may fail to model the evolving semantics of items over time. To address this problem, we propose the Evolving Intra-session and Inter-session Graph Neural Network (EII-GNN) to capture the evolving item semantics by fusing global and local graph information. EII-GNN utilizes a global dynamic graph to model inter-session item transitions and update item embeddings at each timestamp. It also constructs a per-session graph with shortcut edges to learn complex intra-session patterns. To personalize recommendations, a history-aware GRU applies the user’s past sessions. We fuse the inter-session graph, intra-session graph, and history embeddings to obtain the session representation for final recommendation. Our model performed well in experiments with three real-world data sets against its state-of-the-art counterparts.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102691"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156625352400469X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Next-item recommendation aims to predict users’ subsequent behaviors using their historical sequence data. However, sessions are often anonymous, short, and time-varying, making it challenging to capture accurate and evolving item representations. Existing methods using static graphs may fail to model the evolving semantics of items over time. To address this problem, we propose the Evolving Intra-session and Inter-session Graph Neural Network (EII-GNN) to capture the evolving item semantics by fusing global and local graph information. EII-GNN utilizes a global dynamic graph to model inter-session item transitions and update item embeddings at each timestamp. It also constructs a per-session graph with shortcut edges to learn complex intra-session patterns. To personalize recommendations, a history-aware GRU applies the user’s past sessions. We fuse the inter-session graph, intra-session graph, and history embeddings to obtain the session representation for final recommendation. Our model performed well in experiments with three real-world data sets against its state-of-the-art counterparts.

不断发展的会内和会间图谱融合,用于推荐下一个项目
下一个项目推荐旨在利用用户的历史序列数据预测用户的后续行为。然而,会话通常是匿名的、短暂的、随时间变化的,因此捕捉准确且不断变化的项目表征具有挑战性。使用静态图的现有方法可能无法为随时间演变的项目语义建模。为解决这一问题,我们提出了 "不断演化的会内和会间图神经网络"(EII-GNN),通过融合全局和局部图信息来捕捉不断演化的项目语义。EII-GNN 利用全局动态图来模拟会话间项目转换,并在每个时间戳更新项目嵌入。它还构建了带有捷径边的每个会话图,以学习复杂的会话内模式。为了实现个性化推荐,历史感知 GRU 会应用用户过去的会话。我们融合了会话间图、会话内图和历史嵌入,从而获得会话表示,用于最终推荐。在三个真实世界数据集的实验中,我们的模型与最先进的模型相比表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信