Dynamic Mechanical Modulation of WS2 Monolayer by Standing Surface Acoustic Waves

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Laura Polimeno, Anna Di Renzo, Silvia Rizzato, Rosanna Mastria, Milena De Giorgi, Luisa De Marco, Dario Ballarini, Giuseppe Gigli, Aurora Rizzo, Lorenzo Dominici, Giuseppe Maruccio, Christian Wolff, N. Asger Mortensen, Daniele Sanvitto, Francesco Todisco
{"title":"Dynamic Mechanical Modulation of WS2 Monolayer by Standing Surface Acoustic Waves","authors":"Laura Polimeno, Anna Di Renzo, Silvia Rizzato, Rosanna Mastria, Milena De Giorgi, Luisa De Marco, Dario Ballarini, Giuseppe Gigli, Aurora Rizzo, Lorenzo Dominici, Giuseppe Maruccio, Christian Wolff, N. Asger Mortensen, Daniele Sanvitto, Francesco Todisco","doi":"10.1021/acsphotonics.4c00821","DOIUrl":null,"url":null,"abstract":"Surface acoustic waves (SAWs) propagating on piezoelectric materials carry large out-of-plane mechanical strain and strong in-plane electromagnetic fields, providing a fascinating hybrid platform for the manipulation of excitons in active media. The interaction of SAWs with two-dimensional (2D) semiconducting transition-metal dichalcogenide (TMD) monolayers has recently garnered significant attention due to their extreme sensitivity to strain and electromagnetic near-fields, resulting in exciton ionization in lithium niobate (LiNbO<sub>3</sub>) based delay lines. In this study, we demonstrate an innovative approach to manipulate the optomechanical properties of a tungsten disulfide (WS<sub>2</sub>) monolayer, based on the excitation of standing SAWs in an acoustic resonator defined on gallium arsenide (GaAs), a weak piezoelectric material. In contrast to previous reports on LiNbO<sub>3</sub> delay lines, our platform exhibits a resonant enhancement of the monolayer’s photoemission together with the imprinting of a discernible spatial structuring of the WS<sub>2</sub> luminescence in a one-dimensional (1D) periodic pattern. By imaging a large monolayer flake driven at the resonator frequency, we demonstrate that this optical modulation arises from a periodic detachment of the monolayer from the substrate surface due to the robust mechanical oscillations induced by the standing SAW pattern in high quality factor resonators. Our work establishes SAW resonators as an alternative paradigm to locally and reversibly tuning the optical and structural properties of TMD monolayers at room temperature by micro/nanoscale control of mechanical fields. This approach holds substantial potential for applications in the field of optics and nanophotonics with tunable light-matter interactions.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c00821","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface acoustic waves (SAWs) propagating on piezoelectric materials carry large out-of-plane mechanical strain and strong in-plane electromagnetic fields, providing a fascinating hybrid platform for the manipulation of excitons in active media. The interaction of SAWs with two-dimensional (2D) semiconducting transition-metal dichalcogenide (TMD) monolayers has recently garnered significant attention due to their extreme sensitivity to strain and electromagnetic near-fields, resulting in exciton ionization in lithium niobate (LiNbO3) based delay lines. In this study, we demonstrate an innovative approach to manipulate the optomechanical properties of a tungsten disulfide (WS2) monolayer, based on the excitation of standing SAWs in an acoustic resonator defined on gallium arsenide (GaAs), a weak piezoelectric material. In contrast to previous reports on LiNbO3 delay lines, our platform exhibits a resonant enhancement of the monolayer’s photoemission together with the imprinting of a discernible spatial structuring of the WS2 luminescence in a one-dimensional (1D) periodic pattern. By imaging a large monolayer flake driven at the resonator frequency, we demonstrate that this optical modulation arises from a periodic detachment of the monolayer from the substrate surface due to the robust mechanical oscillations induced by the standing SAW pattern in high quality factor resonators. Our work establishes SAW resonators as an alternative paradigm to locally and reversibly tuning the optical and structural properties of TMD monolayers at room temperature by micro/nanoscale control of mechanical fields. This approach holds substantial potential for applications in the field of optics and nanophotonics with tunable light-matter interactions.

Abstract Image

驻留表面声波对 WS2 单层的动态机械调制
在压电材料上传播的表面声波(SAWs)具有较大的面外机械应变和较强的面内电磁场,为操纵活性介质中的激子提供了一个迷人的混合平台。最近,声表面波与二维(2D)半导体过渡金属二卤化物(TMD)单层的相互作用引起了人们的极大关注,这是因为声表面波对应变和电磁近场极为敏感,从而导致基于铌酸锂(LiNbO3)的延迟线中的激子电离。在本研究中,我们展示了一种操纵二硫化钨(WS2)单层光机械特性的创新方法,其基础是在砷化镓(GaAs)这种弱压电材料上定义的声共振中激发驻留声表面波。与之前有关 LiNbO3 延迟线的报道不同,我们的平台不仅能共振增强单层的光发射,还能在一维(1D)周期性图案中印刻出 WS2 发光的明显空间结构。通过对在谐振器频率下驱动的大单层薄片进行成像,我们证明了这种光学调制产生于单层与基底表面的周期性脱离,这是由于高品质因数谐振器中的驻留声表面波图案诱发了强劲的机械振荡。我们的工作确立了声表面波谐振器作为一种替代范例,可在室温下通过对机械场的微/纳米级控制,局部、可逆地调整 TMD 单层的光学和结构特性。这种方法在具有可调光物质相互作用的光学和纳米光子学领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信