Nitrogen enhances drought tolerance of maize during the jointing stage by increasing the proportion of deep nodal roots and reducing the biosynthesis of lignin in root system
Dasheng Zheng, Yujie Cun, Bingxiao Du, Zhifeng Cui, Yuanhua Ma, Yulan Ye, Yue Zhang, Rui Wang
{"title":"Nitrogen enhances drought tolerance of maize during the jointing stage by increasing the proportion of deep nodal roots and reducing the biosynthesis of lignin in root system","authors":"Dasheng Zheng, Yujie Cun, Bingxiao Du, Zhifeng Cui, Yuanhua Ma, Yulan Ye, Yue Zhang, Rui Wang","doi":"10.1007/s11104-024-06924-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Drought has a substantial adverse impact on maize growth during the jointing stage. Nitrogen (N) is an essential nutrient that fosters the growth and yield of maize. However, the underlying mechanisms behind the connection between N and drought tolerance require elucidation.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, we explored the effects of drought and N application on maize during the jointing stage using soil column cultivation. The investigation includes phenotypic analyses, measurements of physiological indexes, microstructural observations, and proteomics analyses.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The impacts of N on maize plants under drought stress were as follows: (1) The supply of N enhanced the root water uptake capacity by reducing the biosynthesis of lignin in the root endodermis and increasing the proportion of deep nodal roots; (2) N reduced the inhibition of photosynthate assimilation caused by drought, resulting in increased leaf area, chlorophyll content, biomass and higher levels of growth-promoting hormones; (3) N improved drought tolerance in maize plants, probably caused by N strengthening the root antioxidant system and thus maintaining reactive oxygen species (ROS) homeostasis.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The physiological mechanisms of N in alleviating drought in maize at the jointing stage, as explored in this study, provide a theoretical foundation and potential strategies for dryland maize cultivation or the selection and design of new drought-tolerant maize lines.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06924-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aims
Drought has a substantial adverse impact on maize growth during the jointing stage. Nitrogen (N) is an essential nutrient that fosters the growth and yield of maize. However, the underlying mechanisms behind the connection between N and drought tolerance require elucidation.
Methods
In this study, we explored the effects of drought and N application on maize during the jointing stage using soil column cultivation. The investigation includes phenotypic analyses, measurements of physiological indexes, microstructural observations, and proteomics analyses.
Results
The impacts of N on maize plants under drought stress were as follows: (1) The supply of N enhanced the root water uptake capacity by reducing the biosynthesis of lignin in the root endodermis and increasing the proportion of deep nodal roots; (2) N reduced the inhibition of photosynthate assimilation caused by drought, resulting in increased leaf area, chlorophyll content, biomass and higher levels of growth-promoting hormones; (3) N improved drought tolerance in maize plants, probably caused by N strengthening the root antioxidant system and thus maintaining reactive oxygen species (ROS) homeostasis.
Conclusions
The physiological mechanisms of N in alleviating drought in maize at the jointing stage, as explored in this study, provide a theoretical foundation and potential strategies for dryland maize cultivation or the selection and design of new drought-tolerant maize lines.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.