Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zheng Su, Dongdong Xu, Xianli Hu, Wanbo Zhu, Lingtong Kong, Zhengzheng Qian, Jiawei Mei, Ruixiang Ma, Xifu Shang, Wenpei Fan, Chen Zhu
{"title":"Biodegradable oxygen-evolving metalloantibiotics for spatiotemporal sono-metalloimmunotherapy against orthopaedic biofilm infections","authors":"Zheng Su, Dongdong Xu, Xianli Hu, Wanbo Zhu, Lingtong Kong, Zhengzheng Qian, Jiawei Mei, Ruixiang Ma, Xifu Shang, Wenpei Fan, Chen Zhu","doi":"10.1038/s41467-024-52489-x","DOIUrl":null,"url":null,"abstract":"<p>Pathogen-host competition for manganese and intricate immunostimulatory pathways severely attenuates the efficacy of antibacterial immunotherapy against biofilm infections associated with orthopaedic implants. Herein, we introduce a spatiotemporal sono-metalloimmunotherapy (SMIT) strategy aimed at efficient biofilm ablation by custom design of ingenious biomimetic metal-organic framework (PCN-224)-coated MnO<sub>2</sub>-hydrangea nanoparticles (MnPM) as a metalloantibiotic. Upon reaching the acidic H<sub>2</sub>O<sub>2</sub>-enriched biofilm microenvironment, MnPM can convert abundant H<sub>2</sub>O<sub>2</sub> into oxygen, which is conducive to significantly enhancing the efficacy of ultrasound (US)-triggered sonodynamic therapy (SDT), thereby exposing bacteria-associated antigens (BAAs). Moreover, MnPM disrupts bacterial homeostasis, further killing more bacteria. Then, the Mn ions released from the degraded MnO<sub>2</sub> can recharge immune cells to enhance the cGAS-STING signaling pathway sensing of BAAs, further boosting the immune response and suppressing biofilm growth via biofilm-specific T cell responses. Following US withdrawal, the sustained oxygenation promotes the survival and migration of fibroblasts, stimulates the expression of angiogenic growth factors and angiogenesis, and neutralizes excessive inflammation. Our findings highlight that MnPM may act as an immune costimulatory metalloantibiotic to regulate the cGAS-STING signaling pathway, presenting a promising alternative to antibiotics for orthopaedic biofilm infection treatment and pro-tissue repair.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52489-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogen-host competition for manganese and intricate immunostimulatory pathways severely attenuates the efficacy of antibacterial immunotherapy against biofilm infections associated with orthopaedic implants. Herein, we introduce a spatiotemporal sono-metalloimmunotherapy (SMIT) strategy aimed at efficient biofilm ablation by custom design of ingenious biomimetic metal-organic framework (PCN-224)-coated MnO2-hydrangea nanoparticles (MnPM) as a metalloantibiotic. Upon reaching the acidic H2O2-enriched biofilm microenvironment, MnPM can convert abundant H2O2 into oxygen, which is conducive to significantly enhancing the efficacy of ultrasound (US)-triggered sonodynamic therapy (SDT), thereby exposing bacteria-associated antigens (BAAs). Moreover, MnPM disrupts bacterial homeostasis, further killing more bacteria. Then, the Mn ions released from the degraded MnO2 can recharge immune cells to enhance the cGAS-STING signaling pathway sensing of BAAs, further boosting the immune response and suppressing biofilm growth via biofilm-specific T cell responses. Following US withdrawal, the sustained oxygenation promotes the survival and migration of fibroblasts, stimulates the expression of angiogenic growth factors and angiogenesis, and neutralizes excessive inflammation. Our findings highlight that MnPM may act as an immune costimulatory metalloantibiotic to regulate the cGAS-STING signaling pathway, presenting a promising alternative to antibiotics for orthopaedic biofilm infection treatment and pro-tissue repair.

Abstract Image

用于时空声波-金属免疫疗法的可降解氧演变金属抗生素防治骨科生物膜感染
病原体与宿主对锰的竞争以及错综复杂的免疫刺激途径严重削弱了抗菌免疫疗法对骨科植入物相关生物膜感染的疗效。在此,我们介绍了一种时空声纳-金属免疫疗法(SMIT)策略,旨在通过定制设计巧妙的仿生物金属有机框架(PCN-224)包覆的 MnO2-hydrangea 纳米粒子(MnPM)作为金属抗生素,高效消融生物膜。MnPM到达酸性H2O2富集的生物膜微环境后,能将丰富的H2O2转化为氧气,有利于显著提高超声(US)触发的声动力疗法(SDT)的疗效,从而暴露细菌相关抗原(BAA)。此外,MnPM 还能破坏细菌的平衡,进一步杀死更多细菌。然后,从降解的 MnO2 中释放的锰离子可以为免疫细胞充电,从而增强 cGAS-STING 信号通路对 BAA 的感应,进一步增强免疫反应,并通过生物膜特异性 T 细胞反应抑制生物膜的生长。停用 US 后,持续的氧合促进了成纤维细胞的存活和迁移,刺激了血管生长因子的表达和血管生成,并中和了过度炎症。我们的研究结果突出表明,MnPM 可作为一种免疫成本刺激性金属抗生素来调节 cGAS-STING 信号通路,有望替代抗生素用于骨科生物膜感染治疗和促进组织修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信