Hierarchical Yolk‐Shell Silicon/Carbon Anode Materials Enhanced by Vertical Graphene Sheets for Commercial Lithium‐Ion Battery Applications

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Peilun Yu, Zhenwei Li, Dongcan Zhang, Qi Xiong, Jie Yu, Chunyi Zhi
{"title":"Hierarchical Yolk‐Shell Silicon/Carbon Anode Materials Enhanced by Vertical Graphene Sheets for Commercial Lithium‐Ion Battery Applications","authors":"Peilun Yu, Zhenwei Li, Dongcan Zhang, Qi Xiong, Jie Yu, Chunyi Zhi","doi":"10.1002/adfm.202413081","DOIUrl":null,"url":null,"abstract":"Yolk‐shell structured silicon/carbon (YS‐Si/C) anode materials show promise for commercial lithium‐ion batteries (LIBs) because of their high specific capacity and excellent cycling life. However, their commercialization has not been realized despite nearly a decade of research, primarily due to poor mechanical strength, limited rate capability, and low energy density. This study reports a hierarchical YS‐Si/C anode material synthesized via thermal chemical vapor deposition for the growth of vertical graphene sheets (VGSs), polymer self‐assembly, and one‐step carbonization, which establishes connections between the Si core and carbon shell through VGSs, enhancing the electrochemical and mechanical characteristics of the YS‐Si/C material. The unique material outperforms VGSs‐free composites, which presents a high specific capacity of 1683.2 mAh g<jats:sup>−1</jats:sup> at 0.1 C, excellent rate performance of 552.2 mAh g<jats:sup>−1</jats:sup> at 10 C, and superior capacity retention of 80.1% after 1000 cycles. When matched with LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cathodes, the ampere‐hour‐level pouch cell delivers high gravimetric and volumetric energy densities of 429.2 Wh kg<jats:sup>−1</jats:sup> and 1083 Wh L<jats:sup>−1</jats:sup>, respectively. Finite element analysis shows that VGSs reduce stress concentration on the carbon shell, helping hollow materials withstand industrial electrode calendaring. This work demonstrates potential for the commercial application of YS‐Si/C anode materials in practical LIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413081","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Yolk‐shell structured silicon/carbon (YS‐Si/C) anode materials show promise for commercial lithium‐ion batteries (LIBs) because of their high specific capacity and excellent cycling life. However, their commercialization has not been realized despite nearly a decade of research, primarily due to poor mechanical strength, limited rate capability, and low energy density. This study reports a hierarchical YS‐Si/C anode material synthesized via thermal chemical vapor deposition for the growth of vertical graphene sheets (VGSs), polymer self‐assembly, and one‐step carbonization, which establishes connections between the Si core and carbon shell through VGSs, enhancing the electrochemical and mechanical characteristics of the YS‐Si/C material. The unique material outperforms VGSs‐free composites, which presents a high specific capacity of 1683.2 mAh g−1 at 0.1 C, excellent rate performance of 552.2 mAh g−1 at 10 C, and superior capacity retention of 80.1% after 1000 cycles. When matched with LiNi0.8Co0.1Mn0.1O2 cathodes, the ampere‐hour‐level pouch cell delivers high gravimetric and volumetric energy densities of 429.2 Wh kg−1 and 1083 Wh L−1, respectively. Finite element analysis shows that VGSs reduce stress concentration on the carbon shell, helping hollow materials withstand industrial electrode calendaring. This work demonstrates potential for the commercial application of YS‐Si/C anode materials in practical LIBs.
通过垂直石墨烯片增强的分层卵壳硅/碳负极材料用于商业锂离子电池应用
卵壳结构硅/碳(YS-Si/C)负极材料具有高比容量和出色的循环寿命,因此有望用于商用锂离子电池(LIB)。然而,尽管经过近十年的研究,其商业化仍未实现,主要原因是机械强度差、速率能力有限以及能量密度低。这项研究报告了一种分层 YS-Si/C 阳极材料,它是通过热化学气相沉积生长垂直石墨烯片(VGS)、聚合物自组装和一步碳化合成的,通过 VGS 在硅芯和碳壳之间建立连接,从而增强了 YS-Si/C 材料的电化学和机械特性。这种独特的材料优于不含 VGSs 的复合材料,在 0.1 摄氏度时具有 1683.2 mAh g-1 的高比容量,在 10 摄氏度时具有 552.2 mAh g-1 的优异速率性能,1000 次循环后的容量保持率高达 80.1%。当与 LiNi0.8Co0.1Mn0.1O2 阴极匹配时,该安培小时级袋式电池的重力和体积能量密度分别高达 429.2 Wh kg-1 和 1083 Wh L-1。有限元分析表明,VGS 可减少碳壳上的应力集中,有助于空心材料承受工业电极压延。这项工作证明了 YS-Si/C 阳极材料在实际 LIB 中的商业应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信