Radiogenic heating sustains long-lived volcanism and magnetic dynamos in super-Earths

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Haiyang Luo, Joseph G. O’Rourke, Jie Deng
{"title":"Radiogenic heating sustains long-lived volcanism and magnetic dynamos in super-Earths","authors":"Haiyang Luo,&nbsp;Joseph G. O’Rourke,&nbsp;Jie Deng","doi":"10.1126/sciadv.ado7603","DOIUrl":null,"url":null,"abstract":"<div >Radiogenic heat production is fundamental to the energy budget of planets. Roughly half of the heat that Earth loses through its surface today comes from the three long-lived, heat-producing elements (potassium, thorium, and uranium). These three elements have long been believed to be highly lithophile and thus concentrate in the mantle of rocky planets. However, our study shows that they all become siderophile under the pressure and temperature conditions relevant to the core formation of large rocky planets dubbed super-Earths. Mantle convection in super-Earths is then primarily driven by heating from the core rather than by a mix of internal heating and cooling from above as in Earth. Partitioning these sources of radiogenic heat into the core remarkably increases the core-mantle boundary (CMB) temperature and the total heat flow across the CMB in super-Earths. Consequently, super-Earths are likely to host long-lived volcanism and strong magnetic dynamos.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado7603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado7603","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Radiogenic heat production is fundamental to the energy budget of planets. Roughly half of the heat that Earth loses through its surface today comes from the three long-lived, heat-producing elements (potassium, thorium, and uranium). These three elements have long been believed to be highly lithophile and thus concentrate in the mantle of rocky planets. However, our study shows that they all become siderophile under the pressure and temperature conditions relevant to the core formation of large rocky planets dubbed super-Earths. Mantle convection in super-Earths is then primarily driven by heating from the core rather than by a mix of internal heating and cooling from above as in Earth. Partitioning these sources of radiogenic heat into the core remarkably increases the core-mantle boundary (CMB) temperature and the total heat flow across the CMB in super-Earths. Consequently, super-Earths are likely to host long-lived volcanism and strong magnetic dynamos.

Abstract Image

辐射加热维持超地球的长寿命火山活动和磁动力
辐射产热是行星能量预算的基础。如今,地球表面散失的热量约有一半来自三种长寿命的产热元素(钾、钍和铀)。长期以来,人们一直认为这三种元素具有很强的亲石性,因此会集中在岩质行星的地幔中。然而,我们的研究表明,在与被称为超级地球的大型岩石行星的内核形成相关的压力和温度条件下,这三种元素都会变成嗜铁元素。因此,超级地球的地幔对流主要是由来自内核的加热驱动的,而不是像地球那样由内部加热和来自上部的冷却混合驱动的。将这些辐射热源划分到内核中,可以显著提高超级地球的内核-地幔边界(CMB)温度和横跨CMB的总热流。因此,超地球很可能拥有长寿命的火山活动和强大的磁动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信