Twisting vortex lines regularize Navier-Stokes turbulence

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dhawal Buaria, John M. Lawson, Michael Wilczek
{"title":"Twisting vortex lines regularize Navier-Stokes turbulence","authors":"Dhawal Buaria,&nbsp;John M. Lawson,&nbsp;Michael Wilczek","doi":"10.1126/sciadv.ado1969","DOIUrl":null,"url":null,"abstract":"<div >Fluid flows are intrinsically characterized via the topology and dynamics of underlying vortex lines. Turbulence in common fluids like water and air, mathematically described by the incompressible Navier-Stokes equations (INSE), engenders spontaneous self-stretching and twisting of vortex lines, generating a complex hierarchy of structures. While the INSE are routinely used to describe turbulence, their regularity remains unproven; the implicit assumption being that the self-stretching is ultimately regularized by viscosity, preventing any singularities. Here, we uncover an inviscid regularizing mechanism stemming from self-stretching itself, by analyzing the flow topology as perceived by an observer aligned with the vorticity vector undergoing amplification. While, initially, vorticity amplification occurs via increasing twisting of vortex lines, a regularizing anti-twist spontaneously emerges to prevent unbounded growth. By isolating a vortex, we additionally demonstrate the genericity of this self-regularizing anti-twist. Our work, directly linking dynamics of vortices to turbulence statistics, reveals how the Navier-Stokes dynamics avoids the development of singularities even without the aid of viscosity.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado1969","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado1969","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid flows are intrinsically characterized via the topology and dynamics of underlying vortex lines. Turbulence in common fluids like water and air, mathematically described by the incompressible Navier-Stokes equations (INSE), engenders spontaneous self-stretching and twisting of vortex lines, generating a complex hierarchy of structures. While the INSE are routinely used to describe turbulence, their regularity remains unproven; the implicit assumption being that the self-stretching is ultimately regularized by viscosity, preventing any singularities. Here, we uncover an inviscid regularizing mechanism stemming from self-stretching itself, by analyzing the flow topology as perceived by an observer aligned with the vorticity vector undergoing amplification. While, initially, vorticity amplification occurs via increasing twisting of vortex lines, a regularizing anti-twist spontaneously emerges to prevent unbounded growth. By isolating a vortex, we additionally demonstrate the genericity of this self-regularizing anti-twist. Our work, directly linking dynamics of vortices to turbulence statistics, reveals how the Navier-Stokes dynamics avoids the development of singularities even without the aid of viscosity.

Abstract Image

扭曲涡流线规整了纳维-斯托克斯湍流
流体流动的本质特征是底层旋涡线的拓扑结构和动力学特性。水和空气等常见流体中的湍流由不可压缩纳维-斯托克斯方程(INSE)进行数学描述,湍流会引起涡线的自发自伸展和扭曲,从而产生复杂的层次结构。虽然纳维-斯托克斯方程经常被用来描述湍流,但其正则性仍未得到证实;隐含的假设是自伸展最终会被粘性正则化,从而防止出现任何奇点。在这里,我们通过分析与正在放大的涡度矢量对齐的观察者所感知的流动拓扑,发现了一种源于自伸展本身的粘性正则化机制。虽然涡度放大最初是通过增加涡线的扭曲发生的,但为了防止无限制的增长,自发地出现了正则化反扭曲。通过分离一个涡旋,我们还证明了这种自规整反扭曲的通用性。我们的研究将涡旋动力学与湍流统计直接联系起来,揭示了纳维-斯托克斯动力学如何在没有粘性的帮助下避免奇点的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信