The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes

Energy Storage Pub Date : 2024-09-12 DOI:10.1002/est2.70044
Zhi-Yue Chen, Fei-Yi Hung, Kai-Chieh Chang
{"title":"The Solid-State Battery Applicational Technology: Material Characteristics and Charge–Discharge Mechanisms of Iron Chloride Electrodes","authors":"Zhi-Yue Chen,&nbsp;Fei-Yi Hung,&nbsp;Kai-Chieh Chang","doi":"10.1002/est2.70044","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study delves into the unique characteristics of an iron chloride cathode with a solid-state electrolyte (SSE) and the construction of a button cell battery (BT cell) for its evaluation. The iron ions in this system can provide either divalent or trivalent ions, which possess a higher electrical capacity (~200 mAh/g) and competitive advantages. The solid-state electrolyte materials, iron compounds (chloride, oxide), exhibit high activation in electrochemistry. After the cycle test, the ferric chloride electrolyte transforms into another iron hydroxide compound due to its high activation. The study examines iron, ferric oxide (Fe<sub>2</sub>O<sub>3</sub>), and ferrous chloride (FeCl<sub>2</sub>) as cathode materials and evaluates their impact on the battery. Cyclic voltammetry compares the potential and current values of the redox reactions among the three. Finally, transmission electron microscopy (TEM) explores the ferric chloride layer and iron hydroxide in ferrous chloride. The study focuses on the high electrochemical activity of the iron chloride layer and explores the crystal structure and composition for electrochemical analysis. The findings of this study are crucial for understanding the potential of iron-ion batteries and the role of iron compounds in improving battery performance.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the unique characteristics of an iron chloride cathode with a solid-state electrolyte (SSE) and the construction of a button cell battery (BT cell) for its evaluation. The iron ions in this system can provide either divalent or trivalent ions, which possess a higher electrical capacity (~200 mAh/g) and competitive advantages. The solid-state electrolyte materials, iron compounds (chloride, oxide), exhibit high activation in electrochemistry. After the cycle test, the ferric chloride electrolyte transforms into another iron hydroxide compound due to its high activation. The study examines iron, ferric oxide (Fe2O3), and ferrous chloride (FeCl2) as cathode materials and evaluates their impact on the battery. Cyclic voltammetry compares the potential and current values of the redox reactions among the three. Finally, transmission electron microscopy (TEM) explores the ferric chloride layer and iron hydroxide in ferrous chloride. The study focuses on the high electrochemical activity of the iron chloride layer and explores the crystal structure and composition for electrochemical analysis. The findings of this study are crucial for understanding the potential of iron-ion batteries and the role of iron compounds in improving battery performance.

固态电池应用技术:氯化铁电极的材料特性和充放电机制
本研究深入探讨了具有固态电解质(SSE)的氯化铁阴极的独特特性,并构建了纽扣电池(BT 电池)对其进行评估。该系统中的铁离子可提供二价或三价离子,具有更高的电容量(约 200 mAh/g)和竞争优势。固态电解质材料、铁化合物(氯化物、氧化物)在电化学中表现出较高的活化性。在循环测试后,氯化铁电解质会因高活性而转化为另一种氢氧化铁化合物。本研究考察了作为阴极材料的铁、氧化铁(Fe2O3)和氯化亚铁(FeCl2),并评估了它们对电池的影响。循环伏安法比较了三种材料氧化还原反应的电位和电流值。最后,透射电子显微镜(TEM)对氯化铁层和氯化亚铁中的氢氧化铁进行了研究。该研究重点关注氯化铁层的高电化学活性,并探索晶体结构和组成,以便进行电化学分析。这项研究的发现对于了解铁离子电池的潜力以及铁化合物在提高电池性能方面的作用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信