Nikola Obradović, Rob A. Schmitz, Frédéric Haffter, Dimitri V. Meier, Mark A. Lever, Martin H. Schroth, Michael Sander
{"title":"Peat Particulate Organic Matter Accepts Electrons During In Situ Incubation in the Anoxic Subsurface of Ombrotrophic Bogs","authors":"Nikola Obradović, Rob A. Schmitz, Frédéric Haffter, Dimitri V. Meier, Mark A. Lever, Martin H. Schroth, Michael Sander","doi":"10.1029/2024JG008223","DOIUrl":null,"url":null,"abstract":"<p>Peat particulate organic matter (POM) in the anoxic subsurface of peatlands is increasingly recognized as an important terminal electron acceptor (TEA) in anaerobic respiration. While POM reduction has been demonstrated in laboratory peat-soil incubations and (electro-) chemical reduction assays, direct demonstration of POM reduction in peat soils under in situ, field conditions involving quantification of transferred electrons remain missing. Herein, we demonstrate that deployment of an oxidized reference POM in the anoxic, methanogenic subsurface of three ombrotrophic bogs, followed by one year incubation, resulted in the transfer of approximately 150–170 μmol of electrons per gram POM to the deployed reference POM. The capacity of this reduced POM to accept electrons was partially restored upon subsequent exposure to dissolved oxygen. These findings provide direct evidence for POM acting as regenerable and sustainable TEA for anaerobic respiration in temporarily anoxic parts of peat soils. Based on the number of electrons transferred to POM and thermodynamic considerations, we estimate that anaerobic respiration to POM may largely suppress methanogenesis in peat soils, particularly close to the oxic-anoxic interface across which POM is expected to undergo redox cycling.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008223","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008223","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Peat particulate organic matter (POM) in the anoxic subsurface of peatlands is increasingly recognized as an important terminal electron acceptor (TEA) in anaerobic respiration. While POM reduction has been demonstrated in laboratory peat-soil incubations and (electro-) chemical reduction assays, direct demonstration of POM reduction in peat soils under in situ, field conditions involving quantification of transferred electrons remain missing. Herein, we demonstrate that deployment of an oxidized reference POM in the anoxic, methanogenic subsurface of three ombrotrophic bogs, followed by one year incubation, resulted in the transfer of approximately 150–170 μmol of electrons per gram POM to the deployed reference POM. The capacity of this reduced POM to accept electrons was partially restored upon subsequent exposure to dissolved oxygen. These findings provide direct evidence for POM acting as regenerable and sustainable TEA for anaerobic respiration in temporarily anoxic parts of peat soils. Based on the number of electrons transferred to POM and thermodynamic considerations, we estimate that anaerobic respiration to POM may largely suppress methanogenesis in peat soils, particularly close to the oxic-anoxic interface across which POM is expected to undergo redox cycling.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology