Optimization of fermentation conditions, physicochemical profile and sensory quality analysis of seedless wampee wine

IF 2.3 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Hong Wang, Xiang Liao, Chunyao Lin, Weidong Bai, Gengsheng Xiao, Xingyuan Huang, Gongliang Liu
{"title":"Optimization of fermentation conditions, physicochemical profile and sensory quality analysis of seedless wampee wine","authors":"Hong Wang,&nbsp;Xiang Liao,&nbsp;Chunyao Lin,&nbsp;Weidong Bai,&nbsp;Gengsheng Xiao,&nbsp;Xingyuan Huang,&nbsp;Gongliang Liu","doi":"10.1186/s13765-024-00938-y","DOIUrl":null,"url":null,"abstract":"<div><p>The aims of the present stud were to optimize fermentation parameters of seedless wampee wine using response surface methodology (RSM) and evaluate the changes in flavor metabolites during fermentation. Seedless wampee wine of optimal sensory quality was produced using an inoculum concentration of 0.6%, initial sugar levels of 200 g/L, a fermentation temperature of 22 °C, and a fermentation period of 9 days. Then the flavor compound profiles (amino acids, organic acids and volatile aroma compounds) of seedless wampee wine during the fermentation under optimal conditions were analyzed using high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometr (GC-MS). The main fermented phase of fermentation resulted in fluctuations in both total amino acids and organic acids, with stabilization occurring later on. A total of 54 volatile components, including esters, alcohols, terpenes, and acids, were putatively identified. Terpenes were the primary drivers of the flavor characteristics of seedless wampee. The rise of esters and decline of terpenes have the potential to significantly alter the flavor of wine during fermentation. These results would contribute to the further development of seedless wampee wine.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00938-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00938-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aims of the present stud were to optimize fermentation parameters of seedless wampee wine using response surface methodology (RSM) and evaluate the changes in flavor metabolites during fermentation. Seedless wampee wine of optimal sensory quality was produced using an inoculum concentration of 0.6%, initial sugar levels of 200 g/L, a fermentation temperature of 22 °C, and a fermentation period of 9 days. Then the flavor compound profiles (amino acids, organic acids and volatile aroma compounds) of seedless wampee wine during the fermentation under optimal conditions were analyzed using high performance liquid chromatography (HPLC) and gas chromatography–mass spectrometr (GC-MS). The main fermented phase of fermentation resulted in fluctuations in both total amino acids and organic acids, with stabilization occurring later on. A total of 54 volatile components, including esters, alcohols, terpenes, and acids, were putatively identified. Terpenes were the primary drivers of the flavor characteristics of seedless wampee. The rise of esters and decline of terpenes have the potential to significantly alter the flavor of wine during fermentation. These results would contribute to the further development of seedless wampee wine.

Graphical Abstract

优化无籽芒皮酒的发酵条件、理化特征和感官质量分析
本研究的目的是利用响应面方法(RSM)优化无籽黄皮酒的发酵参数,并评估发酵过程中风味代谢物的变化。在接种物浓度为 0.6%、初始糖度为 200 克/升、发酵温度为 22 °C、发酵期为 9 天的条件下,生产出感官质量最佳的无籽芒皮酒。然后用高效液相色谱法(HPLC)和气相色谱-质谱法(GC-MS)分析了无籽芒皮酒在最佳条件下发酵过程中的风味化合物特征(氨基酸、有机酸和挥发性芳香化合物)。发酵的主要发酵阶段导致氨基酸总量和有机酸总量波动,随后趋于稳定。共鉴定出 54 种挥发性成分,包括酯类、醇类、萜烯类和酸类。萜烯类化合物是无籽黄皮风味特征的主要驱动因素。酯类的增加和萜烯类的减少有可能在发酵过程中显著改变葡萄酒的风味。这些结果将有助于无籽芒皮酒的进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Biological Chemistry
Applied Biological Chemistry Chemistry-Organic Chemistry
CiteScore
5.40
自引率
6.20%
发文量
70
审稿时长
20 weeks
期刊介绍: Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信