LED light treatments enhance neuroprotective properties and differentially impact phenolic compounds and triterpenoid content in Gotu Kola (Centella asiatica (L.) Urb.)
{"title":"LED light treatments enhance neuroprotective properties and differentially impact phenolic compounds and triterpenoid content in Gotu Kola (Centella asiatica (L.) Urb.)","authors":"","doi":"10.1016/j.cpb.2024.100386","DOIUrl":null,"url":null,"abstract":"<div><p>Due to an array of medicinal properties being attributed to Gotu kola (<em>Centella asiatica</em> (L.) Urb.), there is a growing demand for the incorporation of the plant as an herbal ingredient in drugs, cosmetics but mainly in dietary supplements and herbal drugs, which has been causing a gradual decline on its wild population. A possible way might be the improvement of the content in bioactive constituents that, in this specific matter, have been mainly labelled as being pentacyclic triterpenoids. We hypothesize that using light-emitting diode (LED) treatments can enhance its content in bioactives and improve its neuroprotective effects. Specific LED light treatments caused a metabolic shift, globally reducing the concentrations of the triterpenoids madecassoside, asiaticoside, and their corresponding aglycones. However, LED light treatments caused a pronounced increase in specific phenolic bioactives in comparison with samples obtained under sunlight, mostly pronounced in the concentrations of di-<em>O</em>-caffeoylquinic acids. Principal component analysis corroborated that the improvement on the neuroinflammatory status in BV-2 microglial cells and enhanced inhibition of tyrosinase are correlated with the increase in specific phenolic constituents resulting from LED light treatments. While the anti-neuroinflammatory effects in BV-2 microglial cells are demonstrated here for the first time, our core findings are mostly crucial for meeting the increased demand for <em>C. asiatica</em> in herbal products, as our LED light treatment boosts yields in specific phenolic bioactives and improves neuroprotective effects.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000689/pdfft?md5=cf6666429b78cad8d2021241c394b045&pid=1-s2.0-S2214662824000689-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to an array of medicinal properties being attributed to Gotu kola (Centella asiatica (L.) Urb.), there is a growing demand for the incorporation of the plant as an herbal ingredient in drugs, cosmetics but mainly in dietary supplements and herbal drugs, which has been causing a gradual decline on its wild population. A possible way might be the improvement of the content in bioactive constituents that, in this specific matter, have been mainly labelled as being pentacyclic triterpenoids. We hypothesize that using light-emitting diode (LED) treatments can enhance its content in bioactives and improve its neuroprotective effects. Specific LED light treatments caused a metabolic shift, globally reducing the concentrations of the triterpenoids madecassoside, asiaticoside, and their corresponding aglycones. However, LED light treatments caused a pronounced increase in specific phenolic bioactives in comparison with samples obtained under sunlight, mostly pronounced in the concentrations of di-O-caffeoylquinic acids. Principal component analysis corroborated that the improvement on the neuroinflammatory status in BV-2 microglial cells and enhanced inhibition of tyrosinase are correlated with the increase in specific phenolic constituents resulting from LED light treatments. While the anti-neuroinflammatory effects in BV-2 microglial cells are demonstrated here for the first time, our core findings are mostly crucial for meeting the increased demand for C. asiatica in herbal products, as our LED light treatment boosts yields in specific phenolic bioactives and improves neuroprotective effects.
LED 光处理可增强五加科拉(积雪草)的神经保护特性,并对其酚类化合物和三萜类化合物的含量产生不同影响
由于五加科拉(积雪草)具有多种药用功效,人们越来越需要将这种植物作为草药成分添加到药物和化妆品中,但主要还是添加到膳食补充剂和草药中。一种可能的方法是提高生物活性成分的含量,在这个具体问题上,生物活性成分主要被标记为五环三萜类化合物。我们假设使用发光二极管(LED)处理可以提高其生物活性成分的含量,并改善其神经保护作用。特定的 LED 光处理会引起新陈代谢的转变,在整体上降低三萜类化合物马黛茶苷、积雪草苷及其相应苷醛的浓度。不过,与在阳光下获得的样本相比,LED 光处理明显增加了特定酚类生物活性物质的含量,其中以二-O-咖啡酰奎宁酸的含量最为明显。主成分分析证实,BV-2 微神经胶质细胞神经炎症状态的改善和酪氨酸酶抑制作用的增强与 LED 光处理后特定酚类成分的增加有关。虽然本文首次证明了 BV-2 小神经胶质细胞的抗神经炎症作用,但我们的核心发现对于满足草药产品中对茜草的更高需求至关重要,因为我们的 LED 光处理提高了特定酚类生物活性成分的产量,并改善了神经保护作用。
期刊介绍:
Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.